Export 17 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Yang, L, Liu JW, Ren ZP, Xie SP, Zhang SP, Gao SH.  2018.  Atmospheric conditions for advection-radiation fog over the western Yellow Sea. Journal of Geophysical Research-Atmospheres. 123:5455-5468.   10.1029/2017jd028088   AbstractWebsite

Advection fog occurs usually when warm and moist air flows over cold sea surface. It is occasionally reported that the fog air temperature falls below sea surface temperature (called here the sea fog with sea surface heating [ssH]) due to longwave radiation cooling at fog top. Using 8-year buoy observations, this study reveals that about 33% of the time, the advection fog is with ssH in the western Yellow Sea. By synthesizing long-term observations from meteorological stations, atmospheric soundings, and offshore buoys, this study further investigates the marine atmospheric boundary layer (MABL) structure and atmospheric circulation associated with the ssH sea fog. Composite analysis shows that a local anomalous high pressure favors widespread formation of the ssH sea fog. The subsidence in the high pressure intensifies the thermal and moist stratification between the MABL and free atmosphere through adiabatic warming. The dry air above helps cool the fog layer by enhancing the longwave radiative cooling at the fog top and the vertical mixing beneath, causing air temperature to drop below sea surface temperature. The ratio of sea fog with ssH to total sea fog decreases from spring to summer as the descending motion and MABL stratification both weaken. This study highlights the importance of longwave radiative cooling at the advection fog top and suggests a way to improve sea fog forecast in the Yellow Sea.

Yang, Y, Xie SP, Wu LX, Kosaka Y, Li JP.  2017.  Causes of enhanced sst variability over the equatorial atlantic and its relationship to the Atlantic Zonal Mode in CMIP5. Journal of Climate. 30:6171-6182.   10.1175/jcli-d-16-0866.1   AbstractWebsite

A spurious band of enhanced sea surface temperature (SST) variance (SBEV) is identified over the northern equatorial Atlantic in the Geophysical Fluid Dynamics Laboratory (GFDL) Climate Model, version 2.1. The SBEV is especially pronounced in boreal spring owing to the combined effect of both anomalous atmospheric thermal forcing and oceanic vertical upwelling. The SBEV is a common bias in phase 5 of the Coupled Model Intercomparison Project (CMIP5), found in 14 out of 23 models. The SBEV in CMIP5 is associated with the atmospheric thermal forcing and the oceanic vertical upwelling, similar to GFDL CM2.1. While the tropical North Atlantic variability is only weakly correlated with the Atlantic zonal mode (AZM) in observations, the SBEV in CMIP5 produces conditions that drive and intensify the AZM variability via triggering the Bjerknes feedback. This partially explains why AZM is strong in some CMIP5 models even though the equatorial cold tongue and easterly trades are biased low.

Collins, M, Minobe S, Barreiro M, Bordoni S, Kaspi Y, Kuwano-Yoshida A, Keenlyside N, Manzini E, O'Reilly CH, Sutton R, Xie SP, Zolina O.  2018.  Challenges and opportunities for improved understanding of regional climate dynamics. Nature Climate Change. 8:101-108.   10.1038/s41558-017-0059-8   AbstractWebsite

Dynamical processes in the atmosphere and ocean are central to determining the large-scale drivers of regional climate change, yet their predictive understanding is poor. Here, we identify three frontline challenges in climate dynamics where significant progress can be made to inform adaptation: response of storms, blocks and jet streams to external forcing; basin-to-basin and tropical-extratropical teleconnections; and the development of non-linear predictive theory. We highlight opportunities and techniques for making immediate progress in these areas, which critically involve the development of high-resolution coupled model simulations, partial coupling or pacemaker experiments, as well as the development and use of dynamical metrics and exploitation of hierarchies of models.

Wang, H, Xie SP, Kosaka Y, Liu QY, Du Y.  2019.  Dynamics of Asian summer monsoon response to anthropogenic aerosol forcing. Journal of Climate. 32:843-858.   10.1175/jcli-d-18-0386.1   AbstractWebsite

Anthropogenic aerosols partially mask the greenhouse warming and cause the reduction in Asian summer monsoon precipitation and circulation. By decomposing the atmospheric change into the direct atmospheric response to radiative forcing and sea surface temperature (SST)-mediated change, the physical mechanisms for anthropogenic-aerosol-induced changes in the East Asian summer monsoon (EASM) and South Asian summer monsoon (SASM) are diagnosed. Using coupled and atmospheric general circulation models, this study shows that the aerosol-induced troposphere cooling over Asian land regions generates anomalous sinking motion between 20 degrees and 40 degrees N and weakens the EASM north of 20 degrees N without SST change. The decreased EASM precipitation and the attendant wind changes are largely due to this direct atmospheric response to radiative forcing, although the aerosol-induced North Pacific SST cooling also contributes. The SST-mediated change dominates the aerosol-induced SASM response, with contributions from both the north-south interhemispheric SST gradient and the local SST cooling pattern over the tropical Indian Ocean. Specifically, with large meridional gradient, the zonal-mean SST cooling pattern is most important for the Asian summer monsoon response to anthropogenic aerosol forcing, resulting in a reorganization of the regional meridional atmospheric overturning circulation. While uncertainty in aerosol radiative forcing has been emphasized in the literature, our results show that the intermodel spread is as large in the SST effect on summer monsoon rainfall, calling for more research into the ocean-atmosphere coupling.

Xie, SP, Peng QH, Kamae Y, Zheng XT, Tokinaga H, Wang DX.  2018.  Eastern Pacific ITCZ Dipole and ENSO Diversity. Journal of Climate. 31:4449-4462.   10.1175/jcli-d-17-0905.1   AbstractWebsite

The eastern tropical Pacific features strong climatic asymmetry across the equator, with the intertropical convergence zone (ITCZ) displaced north of the equator most of time. In February- April (FMA), the seasonal warming in the Southern Hemisphere and cooling in the Northern Hemisphere weaken the climatic asymmetry, and a double ITCZ appears with a zonal rainband on either side of the equator. Results from an analysis of precipitation variability reveal that the relative strength between the northern and southern ITCZ varies from one year to another and this meridional seesaw results from ocean-atmosphere coupling. Surprisingly this meridional seesaw is triggered by an El Nino-Southern Oscillation (ENSO) of moderate amplitudes. Although ENSO is originally symmetric about the equator, the asymmetry in the mean climate in the preceding season introduces asymmetric perturbations, which are then preferentially amplified by coupled ocean-atmosphere feedback in FMA when deep convection is sensitive to small changes in cross-equatorial gradient of sea surface temperature. This study shows that moderate ENSO follows a distinct decay trajectory in FMA and southeasterly cross-equatorial wind anomalies cause moderate El Nino to dissipate rapidly as southeasterly cross-equatorial wind anomalies intensify ocean upwelling south of the equator. In contrast, extreme El Nino remains strong through FMA as enhanced deep convection causes westerly wind anomalies to intrude and suppress ocean upwelling in the eastern equatorial Pacific.

Zhou, ZQ, Xie SP, Zhang GJ, Zhou WY.  2018.  Evaluating AMIP Skill in Simulating Interannual Variability over the Indo-Western Pacific. Journal of Climate. 31:2253-2265.   10.1175/jcli-d-17-0123.1   AbstractWebsite

Local correlation between sea surface temperature (SST) and rainfall is weak or even negative in summer over the Indo-western Pacific warm pool, a fact often taken as indicative of weak ocean feedback on the atmosphere. An Atmospheric Model Intercomparison Project (AMIP) simulation forced by monthly varying SSTs derived from a parallel coupled general circulation model (CGCM) run is used to evaluate AMIP skills in simulating interannual variability of rainfall. Local correlation of rainfall variability between AMIP and CGCMsimulations is used as a direct metric of AMIP skill. This "perfect model'' approach sidesteps the issue of model biases that complicates the traditional skill metric based on the correlation between AMIP and observations. Despite weak local SST-rainfall correlation, the AMIP-CGCM rainfall correlation exceeds a 95% significance level over most of the Indo-western Pacific warm pool, indicating the importance of remote (e.g., El Nino in the equatorial Pacific) rather than local SST forcing. Indeed, the AMIP successfully reproduces large-scale modes of rainfall variability over the Indo-western Pacific warm pool. Compared to the northwest Pacific east of the Philippines, the AMIP-CGCMrainfall correlation is low from the Bay of Bengal through the South China Sea, limited by internal variability of the atmosphere that is damped in CGCM by negative feedback from the ocean. Implications for evaluating AMIP skill in simulating observations are discussed.

Shi, JR, Xie SP, Talley LD.  2018.  Evolving relative importance of the Southern Ocean and North Atlantic in anthropogenic ocean heat uptake. Journal of Climate. 31:7459-7479.   10.1175/jcli-d-18-0170.1   AbstractWebsite

Ocean uptake of anthropogenic heat over the past 15 years has mostly occurred in the Southern Ocean, based on Argo float observations. This agrees with historical simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), where the Southern Ocean (south of 30 degrees S) accounts for 72% +/- 28% of global heat uptake, while the contribution from the North Atlantic north of 30 degrees N is only 6%. Aerosols preferentially cool the Northern Hemisphere, and the effect on surface heat flux over the subpolar North Atlantic opposes the greenhouse gas (GHG) effect in nearly equal magnitude. This heat uptake compensation is associated with weakening (strengthening) of the Atlantic meridional overturning circulation (AMOC) in response to GHG (aerosol) radiative forcing. Aerosols are projected to decline in the near future, reinforcing the greenhouse effect on the North Atlantic heat uptake. As a result, the Southern Ocean, which will continue to take up anthropogenic heat largely through the mean upwelling of water from depth, will be joined by increased relative contribution from the North Atlantic because of substantial AMOC slowdown in the twenty-first century. In the RCP8.5 scenario, the percentage contribution to global uptake is projected to decrease to 48% +/- 8% in the Southern Ocean and increase to 26% +/- 6% in the northern North Atlantic. Despite the large uncertainty in the magnitude of projected aerosol forcing, our results suggest that anthropogenic aerosols, given their geographic distributions and temporal trajectories, strongly influence the high-latitude ocean heat uptake and interhemispheric asymmetry through AMOC change.

Zhou, WY, Xie SP.  2018.  A hierarchy of idealized monsoons in an intermediate GCM. Journal of Climate. 31:9021-9036.   10.1175/jcli-d-18-0084.1   AbstractWebsite

A hierarchy of idealized monsoons with increased degrees of complexity is built using an intermediate model with simplified physics and idealized land-sea geometry. This monsoon hierarchy helps formulate a basic understanding about the distribution of the surface equivalent potential temperature (e), which proves to provide a general guide on the monsoon rainfall. The zonally uniform monsoon in the simplest aquaplanet simulations is explained by a linearized model of the meridional distribution of (e), which is driven by the seasonally varying solar insolation and damped by both the monsoon overturning circulation and the local negative feedback. The heat capacities of the surface and the atmosphere give rise to an intrinsic time scale that causes the monsoon migration to lag behind the sun and reduces the monsoon extent and intensity. Monsoons with a zonally confined continent can be understood based on the zonally uniform monsoon by considering the ocean influence on the land through the westerly jet advection, which reduces the monsoon extent and induces zonal asymmetry. Monsoon responses to more realistic factors such as land geometry, albedo, and ocean heat flux are consistently predicted by their impacts on the surface (e) distribution. The soil moisture effect, however, does not fully fit into the surface (e) argument and provides additional control on monsoon rainfall by inducing regional circulation and rainfall patterns.

Wang, CY, Xie SP, Kosaka Y.  2018.  Indo-Western Pacific Climate Variability: ENSO Forcing and Internal Dynamics in a Tropical Pacific Pacemaker Simulation. Journal of Climate. 31:10123-10139.   10.1175/jcli-d-18-0203.1   AbstractWebsite

El Nino-Southern Oscillation (ENSO) peaks in boreal winter but its impact on Indo-western Pacific climate persists for another two seasons. Key ocean-atmosphere interaction processes for the ENSO effect are investigated using the Pacific Ocean-Global Atmosphere (POGA) experiment with a coupled general circulation model, where tropical Pacific sea surface temperature (SST) anomalies are restored to follow observations while the atmosphere and oceans are fully coupled elsewhere. The POGA shows skills in simulating the ENSO-forced warming of the tropical Indian Ocean and an anomalous anticyclonic circulation pattern over the northwestern tropical Pacific in the post-El Nino spring and summer. The 10-member POGA ensemble allows decomposing Indo-western Pacific variability into the ENSO forced and ENSO-unrelated (internal) components. Internal variability is comparable to the ENSO forcing in magnitude and independent of ENSO amplitude and phase. Random internal variability causes apparent decadal modulations of ENSO correlations over the Indo-western Pacific, which are high during epochs of high ENSO variance. This is broadly consistent with instrumental observations over the past 130 years as documented in recent studies. Internal variability features a sea level pressure pattern that extends into the north Indian Ocean and is associated with coherent SST anomalies from the Arabian Sea to the western Pacific, suggestive of ocean-atmosphere coupling.

Zhou, ZQ, Zhang RH, Xie SP.  2019.  Interannual variability of summer surface air temperature over central India: Implications for monsoon onset. Journal of Climate. 32:1693-1706.   10.1175/jcli-d-18-0675.1   AbstractWebsite

Year-to-year variability of surface air temperature (SAT) over central India is most pronounced in June. Climatologically over central India, SAT peaks in May, and the transition from the hot premonsoon to the cooler monsoon period takes place around 9 June, associated with the northeastward propagation of intraseasonal convective anomalies from the western equatorial Indian Ocean. Positive (negative) SAT anomalies during June correspond to a delayed (early) Indian summer monsoon onset and tend to occur during post-El Nino summers. On the interannual time scale, positive SAT anomalies of June over central India are associated with positive SST anomalies over both the equatorial eastern-central Pacific and Indian Oceans, representing El Nino effects in developing and decay years, respectively. Although El Nino peaks in winter, the correlations between winter El Nino and Indian SAT peak in the subsequent June, representing a post-El Nino summer capacitor effect associated with positive SST anomalies over the north Indian Ocean. These results have important implications for the prediction of Indian summer climate including both SAT and summer monsoon onset over central India.

Weller, E, Feng M, Hendon H, Ma J, Xie SP, Caputi N.  2012.  Interannual Variations of Wind Regimes off the Subtropical Western Australia Coast during Austral Winter and Spring. Journal of Climate. 25:5587-5599.   10.1175/jcli-d-11-00324.1   Abstract

Off the Western Australia coast, interannual variations of wind regime during the austral winter and spring are significantly correlated with the Indian Ocean dipole (IOD) and the southern annular mode (SAM) variability. Atmospheric general circulation model experiments forced by an idealized IOD sea surface temperature anomaly field suggest that the IOD-generated deep atmospheric convection anomalies trigger a Rossby wave train in the upper troposphere that propagates into the southern extratropics and induces positive geopotential height anomalies over southern Australia, independent of the SAM. The positive geopotential height anomalies extended from the upper troposphere to the surface, south of the Australian continent, resulting in easterly wind anomalies off the Western Australia coast and a reduction of the high-frequency synoptic storm events that deliver the majority of southwest Australia rainfall during austral winter and spring. In the marine environment, the wind anomalies and reduction of storm events may hamper the western rock lobster recruitment process.

Amaya, DJ, Siler N, Xie SP, Miller AJ.  2018.  The interplay of internal and forced modes of Hadley Cell expansion: lessons from the global warming hiatus. Climate Dynamics. 51:305-319.   10.1007/s00382-017-3921-5   AbstractWebsite

The poleward branches of the Hadley Cells and the edge of the tropics show a robust poleward shift during the satellite era, leading to concerns over the possible encroachment of the globe's subtropical dry zones into currently temperate climates. The extent to which this trend is caused by anthropogenic forcing versus internal variability remains the subject of considerable debate. In this study, we use a Joint EOF method to identify two distinct modes of tropical width variability: (1) an anthropogenically-forced mode, which we identify using a 20-member simulation of the historical climate, and (2) an internal mode, which we identify using a 1000-year pre-industrial control simulation. The forced mode is found to be closely related to the top of the atmosphere radiative imbalance and exhibits a long-term trend since 1860, while the internal mode is essentially indistinguishable from the El Nio Southern Oscillation. Together these two modes explain an average of 70% of the interannual variability seen in model "edge indices" over the historical period. Since 1980, the superposition of forced and internal modes has resulted in a period of accelerated Hadley Cell expansion and decelerated global warming (i.e., the "hiatus"). A comparison of the change in these modes since 1980 indicates that by 2013 the signal has emerged above the noise of internal variability in the Southern Hemisphere, but not in the Northern Hemisphere, with the latter also exhibiting strong zonal asymmetry, particularly in the North Atlantic. Our results highlight the important interplay of internal and forced modes of tropical width change and improve our understanding of the interannual variability and long-term trend seen in observations.

Hu, KM, Xie SP, Huang G.  2017.  Orographically Anchored El Nino Effect on Summer Rainfall in Central China. Journal of Climate. 30:10037-10045.   10.1175/jcli-d-17-0312.1   AbstractWebsite

Year-to-year variations in summer precipitation have great socioeconomic impacts on China. Historical rainfall variability over China is investigated using a newly released high-resolution dataset. The results reveal summer-mean rainfall anomalies associated with ENSO that are anchored by mountains in central China east of the Tibetan Plateau. These orographically anchored hot spots of ENSO influence are poorly represented in coarse-resolution datasets so far in use. In post-El Nino summers, an anomalous anticyclone forms over the tropical northwest Pacific, and the anomalous southwesterlies on the northwest flank cause rainfall to increase in mountainous central China through orographic lift. At upper levels, the winds induce additional adiabatic updraft by increasing the eastward advection of warm air from Tibet. In post-El Nino summers, large-scale moisture convergence induces rainfall anomalies elsewhere over flat eastern China, which move northward from June to August and amount to little in the seasonal mean.

Zhang, Y, Xie SP, Kosaka Y, Yang JC.  2018.  Pacific decadal oscillation: Tropical Pacific forcing versus internal variability. Journal of Climate. 31:8265-8279.   10.1175/jcli-d-18-0164.1   AbstractWebsite

The Pacific decadal oscillation (PDO) is the leading mode of sea surface temperature (SST) variability over the North Pacific (north of 20 degrees N). Its South Pacific counterpart (south of 20 degrees S) is the South Pacific decadal oscillation (SPDO). The effects of tropical eastern Pacific (TEP) SST forcing and internal atmospheric variability are investigated for both the PDO and SPDO using a 10-member ensemble tropical Pacific pacemaker experiment. Each member is forced by the historical radiative forcing and observed SST anomalies in the TEP region. Outside the TEP region, the ocean and atmosphere are fully coupled and freely evolve. The TEP-forced PDO (54% variance) and SPDO (46% variance) are correlated in time and exhibit a symmetric structure about the equator, driven by the Pacific-North American (PNA) and Pacific-South American teleconnections, respectively. The internal PDO resembles the TEP-forced component but is related to internal Aleutian low (AL) variability associated with the Northern Hemisphere annular mode and PNA pattern. The internal variability is locally enhanced by barotropic energy conversion in the westerly jet exit region around the Aleutians. By contrast, barotropic energy conversion is weak associated with the internal SPDO, resulting in weak geographical preference of sea level pressure variability. Therefore, the internal SPDO differs from the TEP-forced component, featuring SST anomalies along similar to 60 degrees S in association with the Southern Hemisphere annular mode. The limitations on isolating the internal component from observations are discussed. Specifically, internal PDO variability appears to contribute significantly to the North Pacific regime shift in the 1940s.

Stuecker, MF, Bitz CM, Armour KC, Proistosescu C, Kang SM, Xie SP, Kim D, McGregor S, Zhang WJ, Zhao S, Cai WJ, Dong Y, Jin FF.  2018.  Polar amplification dominated by local forcing and feedbacks. Nature Climate Change. 8:1076-+.   10.1038/s41558-018-0339-y   AbstractWebsite

The surface temperature response to greenhouse gas forcing displays a characteristic pattern of polar-amplified warming(1-5), particularly in the Northern Hemisphere. However, the causes of this polar amplification are still debated. Some studies highlight the importance of surface-albedo feedback(6-8), while others find larger contributions from longwave feedbacks(4,9,10), with changes in atmospheric and oceanic heat transport also thought to play a role(11-16). Here, we determine the causes of polar amplification using climate model simulations in which CO2 forcing is prescribed in distinct geographical regions, with the linear sum of climate responses to regional forcings replicating the response to global forcing. The degree of polar amplification depends strongly on the location of CO2 forcing. In particular, polar amplification is found to be dominated by forcing in the polar regions, specifically through positive local lapse-rate feedback, with ice-albedo and Planck feedbacks playing subsidiary roles. Extra-polar forcing is further shown to be conducive to polar warming, but given that it induces a largely uniform warming pattern through enhanced poleward heat transport, it contributes little to polar amplification. Therefore, understanding polar amplification requires primarily a better insight into local forcing and feedbacks rather than extra-polar processes.

Liu, W, Lu J, Xie SP, Fedorov A.  2018.  Southern Ocean heat uptake, redistribution, and storage in a warming climate: The role of meridional overturning circulation. Journal of Climate. 31:4727-4743.   10.1175/jcli-d-17-0761.1   AbstractWebsite

Climate models show that most of the anthropogenic heat resulting from increased atmospheric CO2 enters the Southern Ocean near 60 degrees S and is stored around 45 degrees S. This heat is transported to the ocean interior by the meridional overturning circulation (MOC) with wind changes playing an important role in the process. To isolate and quantify the latter effect, we apply an overriding technique to a climate model and decompose the total ocean response to CO2 increase into two major components: one due to wind changes and the other due to direct CO2 effect. We find that the poleward-intensified zonal surface winds tend to shift and strengthen the ocean Deacon cell and hence the residual MOC, leading to anomalous divergence of ocean meridional heat transport around 60 degrees S coupled to a surface heat flux increase. In contrast, at 45 degrees S we see anomalous convergence of ocean heat transport and heat loss at the surface. As a result, the wind-induced ocean heat storage (OHS) peaks at 46 degrees S at a rate of 0.07 ZJ yr(-1) (degrees lat)(-1) (1 ZJ = 10(21) J), contributing 20% to the total OHS maximum. The direct CO2 effect, on the other hand, very slightly alters the residual MOC but primarily warms the ocean. It induces a small but nonnegligible change in eddy heat transport and causes OHS to peak at 42 degrees S at a rate of 0.30 ZJ yr(-1) (degrees lat)(-1), accounting for 80% of the OHS maximum. We also find that the eddy-induced MOC weakens, primarily caused by a buoyancy flux change as a result of the direct CO2 effect, and does not compensate the intensified Deacon cell.

Siler, N, Kosaka Y, Xie SP, Li XC.  2017.  Tropical ocean contributions to California's surprisingly dry El Nino of 2015/16. Journal of Climate. 30:10067-10079.   10.1175/jcli-d-17-0177.1   AbstractWebsite

The major El Nino of 2015/16 brought significantly less precipitation to California than previous events of comparable strength, much to the disappointment of residents suffering through the state's fourth consecutive year of severe drought. Here, California's weak precipitation in 2015/16 relative to previous major El Nino events is investigated within a 40-member ensemble of atmosphere-only simulations run with historical sea surface temperatures (SSTs) and constant radiative forcing. The simulations reveal significant differences in both California precipitation and the large-scale atmospheric circulation between 2015/16 and previous strong El Nino events, which are similar to (albeit weaker than) the differences found in observations. Principal component analysis indicates that these ensemble-mean differences were likely related to a pattern of tropical SST variability with a strong signal in the Indian Ocean and western Pacific and a weaker signal in the eastern equatorial Pacific and subtropical North Atlantic. This SST pattern was missed by the majority of forecast models, which could partly explain their erroneous predictions of above-average precipitation in California in 2015/16.