Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Long, SM, Xie SP.  2015.  Intermodel variations in projected precipitation change over the North Atlantic: Sea surface temperature effect. Geophysical Research Letters. 42:4158-4165.   10.1002/2015gl063852   AbstractWebsite

Intermodel variations in future precipitation projection in the North Atlantic are studied using 23 state-of-art models from Phase 5 of the Coupled Model Intercomparison Project. Model uncertainty in annual mean rainfall change is locally enhanced along the Gulf Stream. The moisture budget analysis reveals that much of the model uncertainty in rainfall change can be traced back to the discrepancies in surface evaporation change and transient eddy effect among models. Results of the intermodel Singular Value Decomposition (SVD) analysis show that intermodel variations in local sea surface temperature (SST) pattern exert a strong control over the spread of rainfall projection among models through the modulation of evaporation change. The first three SVD modes explain more than 60% of the intermodel variance of rainfall projection and show distinct SST patterns with mode water-induced banded structures, reduced subpolar warming due to ocean dynamical cooling, and the Gulf Stream shift, respectively.

Tomita, H, Xie SP, Tokinaga H, Kawai Y.  2013.  Cloud response to the meandering Kuroshio extension front. Journal of Climate. 26:9393-9398.   10.1175/jcli-d-13-00133.1   AbstractWebsite

A unique set of observations on board research vessel (R/V) Mirai in April 2010 captured a striking cloud hole over a cold meander of the Kuroshio Extension (KE) east of Japan as corroborated by atmospheric soundings, ceilometer, shipboard radiation data, and satellite cloud images. Distinct differences were also observed between the warm meander farther to the north and warm water south of the KE. The atmosphere is highly unstable over the warm meander, promoting a well-mixed marine atmospheric boundary layer (MABL) and a layer of solid stratocumulus clouds capped by a strong inversion. Over the warm water south of the KE, MABL deepens and is decoupled from the ocean surface. Scattered cumulus clouds develop as captured by rapid variations in ceilometer-derived cloud base. The results show that the meandering KE front affects the entire MABL and the clouds. Such atmospheric response can potentially intensify the baroclinicity in the lower atmosphere.