Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2016
Wang, H, Xie SP, Tokinaga H, Liu Q, Kosaka Y.  2016.  Detecting cross-equatorial wind change as a fingerprint of climate response to anthropogenic aerosol forcing. Geophysical Research Letters. 43:3444-3450.   10.1002/2016gl068521   AbstractWebsite

Anthropogenic aerosols are amajor driver of the twetieth century climate change. In climate models, the aerosol forcing, larger in the Northern than Southern Hemispheres, induces an interhemispheric Hadley circulation. In support of the model result, we detected a robust change in the zonal mean cross-equatorial wind over the past 60 years from ship observations and reanalyses, accompanied by physically consistent changes in atmospheric pressure and marine cloud cover. Single-forcing experiments indicate that the observed change in cross-equatorial wind is a fingerprint of aerosol forcing. This zonal mean mode follows the evolution of global aerosol forcing that is distinct from regional changes in the Atlantic sector. Atmospheric simulations successfully reproduce this interhemispheric mode, indicating the importance of sea surface temperature mediation in response to anthropogenic aerosol forcing. As societies awaken to reduce aerosol emissions, a phase reversal of this interhemispheric mode is expected in the 21st century.

2013
Xie, SP, Lu B, Xiang BQ.  2013.  Similar spatial patterns of climate responses to aerosol and greenhouse gas changes. Nature Geoscience. 6:828-832.   10.1038/ngeo1931   AbstractWebsite

Spatial variations in ocean warming have been linked to regional changes in tropical cyclones(1), precipitation(2,3) and monsoons(4). But development of reliable regional climate projections for climate change mitigation and adaptation remains challenging(5). The presence of anthropogenic aerosols, which are highly variable in space and time, is thought to induce spatial patterns of climate response that are distinct from those of well-mixed greenhouse gases(4,6-9) Using CMIP5 climate simulations that consider aerosols and greenhouse gases separately, we show that regional responses to changes in greenhouse gases and aerosols are similar over the ocean, as reflected in similar spatial patterns of ocean temperature and precipitation. This similarity suggests that the climate response to radiative changes is relatively insensitive to the spatial distribution of these changes. Although anthropogenic aerosols are largely confined to the Northern Hemisphere, simulations that include aerosol forcing predict decreases in temperature and westerly wind speed that reach the pristine Southern Hemisphere oceans. Over land, the climate response to aerosol forcing is more localized, but larger scale spatial patterns are also evident. We suggest that the climate responses induced by greenhouse gases and aerosols share key ocean-atmosphere feedbacks, leading to a qualitative resemblance in spatial distribution.