Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Richter, I, Xie SP, Morioka Y, Doi T, Taguchi B, Behera S.  2017.  Phase locking of equatorial Atlantic variability through the seasonal migration of the ITCZ. Climate Dynamics. 48:3615-3629.   10.1007/s00382-016-3289-y   AbstractWebsite

The equatorial Atlantic is marked by significant interannual variability in sea-surface temperature (SST) that is phase-locked to late boreal spring and early summer. The role of the atmosphere in this phase locking is examined using observations, reanalysis data, and model output. The results show that equatorial zonal surface wind anomalies, which are a main driver of warm and cold events, typically start decreasing in June, despite SST and sea-level pressure gradient anomalies being at their peak during this month. This behavior is explained by the seasonal northward migration of the intertropical convergence zone (ITCZ) in early summer. The north-equatorial position of the Atlantic ITCZ contributes to the decay of wind anomalies in three ways: (1) horizontal advection associated with the cross-equatorial winds transports air masses of comparatively low zonal momentum anomalies from the southeast toward the equator. (2) The absence of deep convection leads to changes in vertical momentum transport that reduce the equatorial wind anomalies at the surface, while anomalies aloft remain relatively strong. (3) The cross-equatorial flow is associated with increased total wind speed, which increases surface drag and deposit of momentum into the ocean. Previous studies have shown that convection enhances the surface wind response to SST anomalies. The present study indicates that convection also amplifies the surface zonal wind response to sea-level pressure gradients in the western equatorial Atlantic, where SST anomalies are small. This introduces a new element into coupled air-sea interaction of the tropical Atlantic.

Yang, Y, Xie SP, Wu LX, Kosaka Y, Lau NC, Vecchi GA.  2015.  Seasonality and predictability of the Indian Ocean Dipole Mode: ENSO forcing and internal variability. Journal of Climate. 28:8021-8036.   10.1175/jcli-d-15-0078.1   AbstractWebsite

This study evaluates the relative contributions to the Indian Ocean dipole (IOD) mode of interannual variability from the El Nino-Southern Oscillation (ENSO) forcing and ocean-atmosphere feedbacks internal to the Indian Ocean. The ENSO forcing and internal variability is extracted by conducting a 10-member coupled simulation for 1950-2012 where sea surface temperature (SST) is restored to the observed anomalies over the tropical Pacific but interactive with the atmosphere over the rest of the World Ocean. In these experiments, the ensemble mean is due to ENSO forcing and the intermember difference arises from internal variability of the climate system independent of ENSO. These elements contribute one-third and two-thirds of the total IOD variance, respectively. Both types of IOD variability develop into an east-west dipole pattern because of Bjerknes feedback and peak in September-November. The ENSO forced and internal IOD modes differ in several important ways. The forced IOD mode develops in August with a broad meridional pattern and eventually evolves into the Indian Ocean basin mode, while the internal IOD mode grows earlier in June, is more confined to the equator, and decays rapidly after October. The internal IOD mode is more skewed than the ENSO forced response. The destructive interference of ENSO forcing and internal variability can explain early terminating IOD events, referred to as IOD-like perturbations that fail to grow during boreal summer. The results have implications for predictability. Internal variability, as represented by preseason sea surface height anomalies off Sumatra, contributes to predictability considerably. Including this indicator of internal variability, together with ENSO, improves the predictability of IOD.

Mei, W, Xie SP, Zhao M, Wang YQ.  2015.  Forced and internal vriability of tropical cyclone track density in the Western North Pacific. Journal of Climate. 28:143-167.   10.1175/jcli-d-14-00164.1   AbstractWebsite

Forced interannual-to-decadal variability of annual tropical cyclone (TC) track density in the western North Pacific between 1979 and 2008 is studied using TC tracks from observations and simulations by a 25-km-resolution version of the GFDL High-Resolution Atmospheric Model (HiRAM) that is forced by observed sea surface temperatures (SSTs). Two modes dominate the decadal variability: a nearly basinwide mode, and a dipole mode between the subtropics and lower latitudes. The former mode links to variations in TC number and is forced by SST variations over the off-equatorial tropical central North Pacific, whereas the latter might be associated with the Atlantic multidecadal oscillation. The interannual variability is also controlled by two modes: a basinwide mode driven by SST anomalies of opposite signs located in the tropical central Pacific and eastern Indian Ocean, and a southeast-northwest dipole mode connected to the conventional eastern Pacific ENSO. The seasonal evolution of the ENSO effect on TC activity is further explored via a joint empirical orthogonal function analysis using TC track density of consecutive seasons, and the analysis reveals that two types of ENSO are at work. Internal variability in TC track density is then examined using ensemble simulations from both HiRAM and a regional atmospheric model. It exhibits prominent spatial and seasonal patterns, and it is particularly strong in the South China Sea and along the coast of East Asia. This makes an accurate prediction and projection of TC landfall extremely challenging in these regions. In contrast, basin-integrated metrics (e.g., total TC counts and TC days) are more predictable.