Export 10 results:
Sort by: Author Title Type [ Year  (Desc)]
Zhou, ZQ, Zhang RH, Xie SP.  2019.  Interannual variability of summer surface air temperature over central India: Implications for monsoon onset. Journal of Climate. 32:1693-1706.   10.1175/jcli-d-18-0675.1   AbstractWebsite

Year-to-year variability of surface air temperature (SAT) over central India is most pronounced in June. Climatologically over central India, SAT peaks in May, and the transition from the hot premonsoon to the cooler monsoon period takes place around 9 June, associated with the northeastward propagation of intraseasonal convective anomalies from the western equatorial Indian Ocean. Positive (negative) SAT anomalies during June correspond to a delayed (early) Indian summer monsoon onset and tend to occur during post-El Nino summers. On the interannual time scale, positive SAT anomalies of June over central India are associated with positive SST anomalies over both the equatorial eastern-central Pacific and Indian Oceans, representing El Nino effects in developing and decay years, respectively. Although El Nino peaks in winter, the correlations between winter El Nino and Indian SAT peak in the subsequent June, representing a post-El Nino summer capacitor effect associated with positive SST anomalies over the north Indian Ocean. These results have important implications for the prediction of Indian summer climate including both SAT and summer monsoon onset over central India.

Wang, H, Xie SP, Kosaka Y, Liu QY, Du Y.  2019.  Dynamics of Asian summer monsoon response to anthropogenic aerosol forcing. Journal of Climate. 32:843-858.   10.1175/jcli-d-18-0386.1   AbstractWebsite

Anthropogenic aerosols partially mask the greenhouse warming and cause the reduction in Asian summer monsoon precipitation and circulation. By decomposing the atmospheric change into the direct atmospheric response to radiative forcing and sea surface temperature (SST)-mediated change, the physical mechanisms for anthropogenic-aerosol-induced changes in the East Asian summer monsoon (EASM) and South Asian summer monsoon (SASM) are diagnosed. Using coupled and atmospheric general circulation models, this study shows that the aerosol-induced troposphere cooling over Asian land regions generates anomalous sinking motion between 20 degrees and 40 degrees N and weakens the EASM north of 20 degrees N without SST change. The decreased EASM precipitation and the attendant wind changes are largely due to this direct atmospheric response to radiative forcing, although the aerosol-induced North Pacific SST cooling also contributes. The SST-mediated change dominates the aerosol-induced SASM response, with contributions from both the north-south interhemispheric SST gradient and the local SST cooling pattern over the tropical Indian Ocean. Specifically, with large meridional gradient, the zonal-mean SST cooling pattern is most important for the Asian summer monsoon response to anthropogenic aerosol forcing, resulting in a reorganization of the regional meridional atmospheric overturning circulation. While uncertainty in aerosol radiative forcing has been emphasized in the literature, our results show that the intermodel spread is as large in the SST effect on summer monsoon rainfall, calling for more research into the ocean-atmosphere coupling.

Kamae, Y, Mei W, Xie SP.  2017.  Climatological relationship between warm season atmospheric rivers and heavy rainfall over East Asia. Journal of the Meteorological Society of Japan. 95:411-431.   10.2151/jmsj.2017-027   AbstractWebsite

Eddy transport of atmospheric,ater vapor from the tropics is important for rainfall and related natural disasters in the middle latitudes. Atmospheric rivers (ARs), intense moisture plumes that are typically associated with extratropical cyclones, often produce heavy precipitation upon encountering topography on the west coasts of mid-latitude North America and Europe. ARs also occur over the northwestern Pacific and sometimes cause floods and landslides over East Asia, but the climatological relationship between ARs and heavy rainfall in this region remains unclear. Here we evaluate the contribution of ARs to the hydrological cycle over East Asia using high-resolution daily rainfall observations and an atmospheric reanalysis during 1958-2007. Despite their low occurrence, ARs account for 14-44 % of the total rainfall and 20-90 % of extreme heavy-rainfall events during spring, summer, and autumn. AR-related extreme rainfall is especially pronounced over western-to-southeastern slopes of terrains over the Korean Peninsula and Japan, owing to strong orographic effects and a stable direction of low-level moisture flows. A strong relationship between warm-season AR heavy rainfall and preceding-winter El Nino is identified since the 1970s, suggesting the potential of predicting heavy-rainfall risk over Korea and Japan at seasonal leads.

Zheng, XT, Xie SP, Lv LH, Zhou ZQ.  2016.  Intermodel uncertainty in ENSO amplitude change tied to Pacific Ocean warming pattern. Journal of Climate. 29:7265-7279.   10.1175/jcli-d-16-0039.1   AbstractWebsite

How El Nino-Southern Oscillation (ENSO) will change under global warming affects changes in extreme events around the world. The change of ENSO amplitude is investigated based on the historical simulations and representative concentration pathway (RCP) 8.5 experiments in phase 5 of the Coupled Model Intercomparison Project (CMIP5). The projected change in ENSO amplitude is highly uncertain with large intermodel uncertainty. By using the relative sea surface temperature (SST) as a measure of convective instability, this study finds that the spatial pattern of tropical Pacific surface warming is the major source of intermodel uncertainty in ENSO amplitude change. In models with an enhanced mean warming in the eastern equatorial Pacific, the barrier to deep convection is reduced, and the intensified rainfall anomalies of ENSO amplify the wind response and hence SST variability. In models with a reduced eastern Pacific warming, conversely, ENSO amplitude decreases. Corroborating the mean SST pattern effect, intermodel uncertainty in changes of ENSO-induced rainfall variability decreases substantially in atmospheric simulations forced by a common ocean warming pattern. Thus, reducing the uncertainty in the Pacific surface warming pattern helps improve the reliability of ENSO projections. To the extent that correcting model biases favors an El Nino-like mean warming pattern, this study suggests an increase in ENSO-related SST variance likely under global warming.

Wang, H, Xie SP, Liu QY.  2016.  Comparison of climate response to anthropogenic aerosol versus greenhouse gas forcing: Distinct patterns. Journal of Climate. 29:5175-5188.   10.1175/jcli-d-16-0106.1   AbstractWebsite

Spatial patterns of climate response to changes in anthropogenic aerosols and well-mixed greenhouse gases ( GHGs) are investigated using climate model simulations for the twentieth century. The climate response shows both similarities and differences in spatial pattern between aerosol and GHG runs. Common climate response between aerosol and GHG runs tends to be symmetric about the equator. This work focuses on the distinctive patterns that are unique to the anthropogenic aerosol forcing. The tropospheric cooling induced by anthropogenic aerosols is locally enhanced in the midlatitude Northern Hemisphere with a deep vertical structure around 40 degrees N, anchoring a westerly acceleration in thermal wind balance. The aerosol-induced negative radiative forcing in the Northern Hemisphere requires a cross-equatorial Hadley circulation to compensate interhemispheric energy imbalance in the atmosphere. Associated with a southward shift of the intertropical convergence zone, this interhemispheric asymmetric mode is unique to aerosol forcing and absent in GHG runs. Comparison of key climate response pattern indices indicates that the aerosol forcing dominates the interhemispheric asymmetric climate response in historical all-forcing simulations, as well as regional precipitation change such as the drying trend over the East Asian monsoon region. While GHG forcing dominates global mean surface temperature change, its effect is on par with and often opposes the aerosol effect on precipitation, making it difficult to detect anthropogenic change in rainfall from historical observations.

Wang, H, Xie SP, Tokinaga H, Liu Q, Kosaka Y.  2016.  Detecting cross-equatorial wind change as a fingerprint of climate response to anthropogenic aerosol forcing. Geophysical Research Letters. 43:3444-3450.   10.1002/2016gl068521   AbstractWebsite

Anthropogenic aerosols are amajor driver of the twetieth century climate change. In climate models, the aerosol forcing, larger in the Northern than Southern Hemispheres, induces an interhemispheric Hadley circulation. In support of the model result, we detected a robust change in the zonal mean cross-equatorial wind over the past 60 years from ship observations and reanalyses, accompanied by physically consistent changes in atmospheric pressure and marine cloud cover. Single-forcing experiments indicate that the observed change in cross-equatorial wind is a fingerprint of aerosol forcing. This zonal mean mode follows the evolution of global aerosol forcing that is distinct from regional changes in the Atlantic sector. Atmospheric simulations successfully reproduce this interhemispheric mode, indicating the importance of sea surface temperature mediation in response to anthropogenic aerosol forcing. As societies awaken to reduce aerosol emissions, a phase reversal of this interhemispheric mode is expected in the 21st century.

Zhou, ZQ, Xie SP.  2015.  Effects of climatological model biases on the projection of tropical climate change. Journal of Climate. 28:9909-9917.   10.1175/jcli-d-15-0243.1   AbstractWebsite

Climate models suffer from long-standing biases, including the double intertropical convergence zone (ITCZ) problem and the excessive westward extension of the equatorial Pacific cold tongue. An atmospheric general circulation model is used to investigate how model biases in the mean state affect the projection of tropical climate change. The model is forced with a pattern of sea surface temperature (SST) increase derived from a coupled simulation of global warming but uses an SST climatology derived from either observations or a coupled historical simulation. The comparison of the experiments reveals that the climatological biases have important impacts on projected changes in the tropics. Specifically, during February-April when the climatological ITCZ displaces spuriously into the Southern Hemisphere, the model overestimates (underestimates) the projected rainfall increase in the warmer climate south (north) of the equator over the eastern Pacific. Furthermore, the global warming-induced Walker circulation slowdown is biased weak in the projection using coupled model climatology, suggesting that the projection of the reduced equatorial Pacific trade winds may also be underestimated. This is related to the bias that the climatological Walker circulation is too weak in the model, which is in turn due to a too-weak mean SST gradient in the zonal direction. The results highlight the importance of improving the climatological simulation for more reliable projections of regional climate change.

Liu, JW, Xie SP, Zhang SP.  2015.  Effects of the Hawaiian Islands on the vertical structure of low-level clouds from CALIPSO lidar. Journal of Geophysical Research-Atmospheres. 120:215-228.   10.1002/2014jd022410   AbstractWebsite

The steady northeast trade winds impinge on the Hawaiian Islands, producing prominent island wakes of multispatial scales from tens to thousands of kilometers. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) reveal rich three-dimensional structures of low-level clouds that are induced by the islands, distinct from the background environment. The cloud frequency peaks between 1.5 and 2.0km in cloud top elevation over the windward slopes of the islands of Kauai and Oahu due to orographic lifting and daytime island heating. In the nighttime near-island wake of Kauai, CALIPSO captures a striking cloud hole below 1.6km as the cold advection from the island suppresses low-level clouds. The cyclonic eddy of the mechanical wake behind the island of Hawaii favors the formation of low-level clouds (below 2.5km), and the anticyclonic eddy suppresses the low-level cloud formation, indicative of the dynamical effect on the vertical structure of low-level clouds. In the long Hawaiian wake due to air-sea interaction, low-level clouds form over both the warmer and colder waters, but the cloud tops are 400-600m higher over the warm than the cold waters. In addition, the day-night differences and the sensitivity of low-level clouds to the background trade wind inversion height are also studied. Key Points

Liu, L, Xie SP, Zheng XT, Li T, Du Y, Huang G, Yu WD.  2014.  Indian Ocean variability in the CMIP5 multi-model ensemble: the zonal dipole mode. Climate Dynamics. 43:1715-1730.   10.1007/s00382-013-2000-9   AbstractWebsite

The performance of 21 Coupled Model Intercomparison Project Phase 5 (CMIP5) models in the simulation of the Indian Ocean Dipole (IOD) mode is evaluated. Compared to CMIP3, CMIP5 models exhibit a similar spread in IOD intensity. A detailed diagnosis was carried out to understand whether CMIP5 models have shown improvement in their representation of the important dynamical and thermodynamical feedbacks in the tropical Indian Ocean. These include the Bjerknes dynamic air-sea feedback, which includes the equatorial zonal wind response to sea surface temperature (SST) anomaly, the thermocline response to equatorial zonal wind forcing, the ocean subsurface temperature response to the thermocline variations, and the thermodynamic air-sea coupling that includes the wind-evaporation-SST and cloud-radiation-SST feedback. Compared to CMIP3, the CMIP5 ensemble produces a more realistic positive wind-evaporation-SST feedback during the IOD developing phase, while the simulation of Bjerknes dynamic feedback is more unrealistic especially with regard to the wind response to SST forcing and the thermocline response to surface wind forcing. The overall CMIP5 performance in the IOD simulation does not show remarkable improvements compared to CMIP3. It is further noted that the El Nio-Southern Oscillation (ENSO) and IOD amplitudes are closely related, if a model generates a strong ENSO, it is likely that this model also simulates a strong IOD.

Xie, SP, Lu B, Xiang BQ.  2013.  Similar spatial patterns of climate responses to aerosol and greenhouse gas changes. Nature Geoscience. 6:828-832.   10.1038/ngeo1931   AbstractWebsite

Spatial variations in ocean warming have been linked to regional changes in tropical cyclones(1), precipitation(2,3) and monsoons(4). But development of reliable regional climate projections for climate change mitigation and adaptation remains challenging(5). The presence of anthropogenic aerosols, which are highly variable in space and time, is thought to induce spatial patterns of climate response that are distinct from those of well-mixed greenhouse gases(4,6-9) Using CMIP5 climate simulations that consider aerosols and greenhouse gases separately, we show that regional responses to changes in greenhouse gases and aerosols are similar over the ocean, as reflected in similar spatial patterns of ocean temperature and precipitation. This similarity suggests that the climate response to radiative changes is relatively insensitive to the spatial distribution of these changes. Although anthropogenic aerosols are largely confined to the Northern Hemisphere, simulations that include aerosol forcing predict decreases in temperature and westerly wind speed that reach the pristine Southern Hemisphere oceans. Over land, the climate response to aerosol forcing is more localized, but larger scale spatial patterns are also evident. We suggest that the climate responses induced by greenhouse gases and aerosols share key ocean-atmosphere feedbacks, leading to a qualitative resemblance in spatial distribution.