Publications

Export 21 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y [Z]   [Show ALL]
Z
Zeng, LL, Du Y, Xie SP, Wang DX.  2009.  Barrier layer in the South China Sea during summer 2000. Dynamics of Atmospheres and Oceans. 47:38-54.   10.1016/j.dynatmoce.2008.08.001   Abstract
n/a
Zhang, Y, Xie SP, Kosaka Y, Yang JC.  2018.  Pacific decadal oscillation: Tropical Pacific forcing versus internal variability. Journal of Climate. 31:8265-8279.   10.1175/jcli-d-18-0164.1   AbstractWebsite

The Pacific decadal oscillation (PDO) is the leading mode of sea surface temperature (SST) variability over the North Pacific (north of 20 degrees N). Its South Pacific counterpart (south of 20 degrees S) is the South Pacific decadal oscillation (SPDO). The effects of tropical eastern Pacific (TEP) SST forcing and internal atmospheric variability are investigated for both the PDO and SPDO using a 10-member ensemble tropical Pacific pacemaker experiment. Each member is forced by the historical radiative forcing and observed SST anomalies in the TEP region. Outside the TEP region, the ocean and atmosphere are fully coupled and freely evolve. The TEP-forced PDO (54% variance) and SPDO (46% variance) are correlated in time and exhibit a symmetric structure about the equator, driven by the Pacific-North American (PNA) and Pacific-South American teleconnections, respectively. The internal PDO resembles the TEP-forced component but is related to internal Aleutian low (AL) variability associated with the Northern Hemisphere annular mode and PNA pattern. The internal variability is locally enhanced by barotropic energy conversion in the westerly jet exit region around the Aleutians. By contrast, barotropic energy conversion is weak associated with the internal SPDO, resulting in weak geographical preference of sea level pressure variability. Therefore, the internal SPDO differs from the TEP-forced component, featuring SST anomalies along similar to 60 degrees S in association with the Southern Hemisphere annular mode. The limitations on isolating the internal component from observations are discussed. Specifically, internal PDO variability appears to contribute significantly to the North Pacific regime shift in the 1940s.

Zhang, S-P, Xie S-P, Liu Q-Y, Yang Y-Q, Wang X-G, Ren Z-P.  2009.  Seasonal Variations of Yellow Sea Fog: Observations and Mechanisms. Journal of Climate. 22:6758-6772.   10.1175/2009jcli2806.1   Abstract
n/a
Zhang, RS, Xie SP, Xu LX, Liu QY.  2016.  Changes in mixed layer depth and spring bloom in the Kuroshio extension under global warming. Advances in Atmospheric Sciences. 33:452-461.   10.1007/s00376-015-5113-8   AbstractWebsite

The mixed layer is deep in January-April in the Kuroshio Extension region. This paper investigates the response in this region of mixed layer depth (MLD) and the spring bloom initiation to global warming using the output of 15 models from CMIP5. The models indicate that in the late 21st century the mixed layer will shoal, and the MLD reduction will be most pronounced in spring at about 33A degrees N on the southern edge of the present deep-MLD region. The advection of temperature change in the upper 100 m by the mean eastward flow explains the spatial pattern of MLD shoaling in the models. Associated with the shoaling mixed layer, the onset of spring bloom inception is projected to advance due to the strengthened stratification in the warming climate.

Zhang, S-P, Liu J-W, Xie S-P, Meng X-G.  2011.  The Formation of a Surface Anticyclone over the Yellow and East China Seas in Spring. Journal of the Meteorological Society of Japan. 89:119-131.   10.2151/jmsj.2011-202   Abstract
n/a
Zheng, X-T, Xie S-P, Vecchi GA, Liu Q, Hafner J.  2010.  Indian Ocean Dipole Response to Global Warming: Analysis of Ocean-Atmospheric Feedbacks in a Coupled Model. Journal of Climate. 23:1240-1253.   10.1175/2009jcli3326.1   Abstract
n/a
Zheng, XT, Hui C, Xie SP, Cai WJ, Long SM.  2019.  Intensification of El Nino Rainfall Variability Over the Tropical Pacific in the Slow Oceanic Response to Global Warming. Geophysical Research Letters. 46:2253-2260.   10.1029/2018gl081414   AbstractWebsite

Changes in rainfall variability of El Nino-Southern Oscillation (ENSO) are investigated under scenarios where the greenhouse gases increase and then stabilize. During the period of increasing greenhouse forcing, the ocean mixed layer warms rapidly. After the forcing stabilizes, the deeper ocean continues to warm the surface (the slow response). We show that ENSO rainfall variability over the tropical Pacific intensifies in both periods but the rate of increase per degree global mean surface temperature (GMST) warming is larger for the slow response because of greater relative warming in the base state as the mean upwelling changes from a damping to a driver of the surface warming. Our results have important implications for climate extremes under GMST stabilization that the Paris Agreement calls for. To stabilize GMST, the fast surface cooling offsets the slow warming from the prior greenhouse gas increase, while ENSO rainfall variability would continue to increase. Plain Language Summary The Paris Agreement calls for limiting global mean surface temperature increase to well below 2 degrees at the end of the 21st century. This requires the greenhouse gas (GHG) concentration to peak and subsequently decline in the next few decades. After the GHG concentration peak, the heat accumulated in the ocean surface layer continues to penetrate to the deeper ocean. This deeper ocean warming leads to a slow response of surface warming, further influencing the climate system. This study examines scenarios where GHGs increase and then stabilize to isolate the fast and slow responses of El Nino-Southern Oscillation (ENSO) rainfall variability. We find intensification of ENSO rainfall variability both during the increase and after stabilization of GHG concentrations due to a persistent El Nino-like mean warming pattern in the tropical Pacific. Furthermore, for unit global mean surface temperature increase, the changes in the mean state temperature and ENSO rainfall variability in the eastern equatorial Pacific is larger during the slow response. These results imply that there is a need for GHG emission reduction in the near future to avoid more extreme tropical rainfall during El Nino.

Zheng, X-T, Xie S-P, Liu Q.  2011.  Response of the Indian Ocean Basin Mode and Its Capacitor Effect to Global Warming. Journal of Climate. 24:6146-6164.   10.1175/2011jcli4169.1   Abstract
n/a
Zheng, XT, Xie SP, Du Y, Liu L, Huang G, Liu QY.  2013.  Indian Ocean dipole response to global warming in the CMIP5 multimodel ensemble. Journal of Climate. 26:6067-6080.   10.1175/jcli-d-12-00638.1   AbstractWebsite

The response of the Indian Ocean dipole (IOD) mode to global warming is investigated based on simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5). In response to increased greenhouse gases, an IOD-like warming pattern appears in the equatorial Indian Ocean, with reduced (enhanced) warming in the east (west), an easterly wind trend, and thermocline shoaling in the east. Despite a shoaling thermocline and strengthened thermocline feedback in the eastern equatorial Indian Ocean, the interannual variance of the IOD mode remains largely unchanged in sea surface temperature (SST) as atmospheric feedback and zonal wind variance weaken under global warming. The negative skewness in eastern Indian Ocean SST is reduced as a result of the shoaling thermocline. The change in interannual IOD variance exhibits some variability among models, and this intermodel variability is correlated with the change in thermocline feedback. The results herein illustrate that mean state changes modulate interannual modes, and suggest that recent changes in the IOD mode are likely due to natural variations.

Zheng, XT, Xie SP, Lv LH, Zhou ZQ.  2016.  Intermodel uncertainty in ENSO amplitude change tied to Pacific Ocean warming pattern. Journal of Climate. 29:7265-7279.   10.1175/jcli-d-16-0039.1   AbstractWebsite

How El Nino-Southern Oscillation (ENSO) will change under global warming affects changes in extreme events around the world. The change of ENSO amplitude is investigated based on the historical simulations and representative concentration pathway (RCP) 8.5 experiments in phase 5 of the Coupled Model Intercomparison Project (CMIP5). The projected change in ENSO amplitude is highly uncertain with large intermodel uncertainty. By using the relative sea surface temperature (SST) as a measure of convective instability, this study finds that the spatial pattern of tropical Pacific surface warming is the major source of intermodel uncertainty in ENSO amplitude change. In models with an enhanced mean warming in the eastern equatorial Pacific, the barrier to deep convection is reduced, and the intensified rainfall anomalies of ENSO amplify the wind response and hence SST variability. In models with a reduced eastern Pacific warming, conversely, ENSO amplitude decreases. Corroborating the mean SST pattern effect, intermodel uncertainty in changes of ENSO-induced rainfall variability decreases substantially in atmospheric simulations forced by a common ocean warming pattern. Thus, reducing the uncertainty in the Pacific surface warming pattern helps improve the reliability of ENSO projections. To the extent that correcting model biases favors an El Nino-like mean warming pattern, this study suggests an increase in ENSO-related SST variance likely under global warming.

Zhou, ZQ, Xie SP, Zheng XT, Liu QY.  2013.  Indian Ocean Dipole response to global warming: A multi-member study with CCSM4. Journal of Ocean University of China. 12:209-215.   10.1007/s11802-013-2200-2   AbstractWebsite

Based on a coupled ocean-atmosphere model, the response of the Indian Ocean Dipole (IOD) mode to global warming is investigated with a six member ensemble of simulations for the period 1850-2100. The model can simulate the IOD features realistically, including the east-west dipole pattern and the phase locking in boreal autumn. The ensemble analysis suppresses internal variability and isolates the radiative forced response. In response to increasing greenhouse gases, a weakening of the Walker circulation leads to the easterly wind anomalies in the equatorial Indian Ocean and the shoaling thermocline in the eastern equatorial Indian Ocean (EEIO), and sea surface temperature and precipitation changes show an IOD-like pattern in the equatorial Indian Ocean. Although the thermocline feedback intensifies with shoaling, the interannual variability of the IOD mode surprisingly weakens under global warming. The zonal wind feedback of IOD is found to weaken as well, due to decreased precipitation in the EEIO. Therefore, the atmospheric feedback decreases much more than the oceanic feedback increases, causing the decreased IOD variance in this model.

Zhou, WY, Xie SP, Zhou ZQ.  2016.  Slow preconditioning for the abrupt convective jump over the Northwest Pacific during summer. Journal of Climate. 29:8103-8113.   10.1175/jcli-d-16-0342.1   AbstractWebsite

The rapid intensification of convective activity in mid-July over the northwest Pacific marks the final stage of the Asian summer monsoon, accompanied by major shifts in regional rainfall and circulation patterns. An entraining plume model is used to investigate the physical processes underlying the abrupt convective jump. Despite little change in sea surface temperature (SST), gradual lower-troposphere mixing leads to a threshold transition in the model as follows. Before mid-July, although SST is already high (29 degrees C), the convective plume is inhibited by the capping inversion above the trade cumulus boundary layer. As the lower troposphere is gradually mixed, the boundary layer top rises with reduced atmospheric stability and increased humidity in the lower troposphere. These factors weaken the inhibition effect of the inversion on the entraining plume. As soon as the plume is able to overcome the inversion barrier, it can rise all the way to the upper troposphere. This marks an abrupt threshold transition to a deep convection regime with heavy rainfall. The convective available potential energy (CAPE) of the entraining plume is found to be a better indicator of the rainfall intensity compared to the conventional undiluted CAPE. The latter fails to capture the onset by neglecting interactions between convective clouds and the environment. Current general circulation models (GCMs) fail to capture the abrupt convective jump and instead simulate a rather smooth seasonal evolution of rainfall. Compared to observations, GCMs simulate a higher trade cumulus top with excessive mixing in the lower troposphere. Convection is no longer inhibited by the inversion barrier, and rainfall simply follows the smooth variation of SST.

Zhou, ZQ, Xie SP.  2015.  Effects of climatological model biases on the projection of tropical climate change. Journal of Climate. 28:9909-9917.   10.1175/jcli-d-15-0243.1   AbstractWebsite

Climate models suffer from long-standing biases, including the double intertropical convergence zone (ITCZ) problem and the excessive westward extension of the equatorial Pacific cold tongue. An atmospheric general circulation model is used to investigate how model biases in the mean state affect the projection of tropical climate change. The model is forced with a pattern of sea surface temperature (SST) increase derived from a coupled simulation of global warming but uses an SST climatology derived from either observations or a coupled historical simulation. The comparison of the experiments reveals that the climatological biases have important impacts on projected changes in the tropics. Specifically, during February-April when the climatological ITCZ displaces spuriously into the Southern Hemisphere, the model overestimates (underestimates) the projected rainfall increase in the warmer climate south (north) of the equator over the eastern Pacific. Furthermore, the global warming-induced Walker circulation slowdown is biased weak in the projection using coupled model climatology, suggesting that the projection of the reduced equatorial Pacific trade winds may also be underestimated. This is related to the bias that the climatological Walker circulation is too weak in the model, which is in turn due to a too-weak mean SST gradient in the zonal direction. The results highlight the importance of improving the climatological simulation for more reliable projections of regional climate change.

Zhou, WY, Xie SP.  2017.  Intermodel spread around the Kuroshio-Oyashio Extension region in coupled GCMs caused by meridional variation of the westerly jet from atmospheric GCMs. Journal of Climate. 30:4589-4599.   10.1175/jcli-d-16-0831.1   AbstractWebsite

The Kuroshio-Oyashio Extension (KOE) is a region of energetic oceanic mesoscale eddies and vigorous air-sea interaction that can influence climate variability over the northwest Pacific and East Asia. General circulation models (GCMs) exhibit considerable differences in their simulated climatology around the KOE region. Specifically, there are substantial intermodel spreads in both sea surface temperature (SST) and the upper-level westerly jet. In this study, the cause for such large spreads is studied by analyzing 21 pairs of coupled and atmospheric GCMs from phase 5 of the Coupled Model Intercomparison Project (CMIP5). It is found that the intermodel spread of the climatological westerly jet among coupled GCMs is largely inherited from their atmospheric models rather than being due to their SST difference as previously thought. An anomalous equatorward shift in the simulated westerly jet can give rise to a cold SST bias around the KOE region as follows. The equatorward jet shift induces cyclonic surface wind anomalies over the North Pacific, which not only enhance the turbulent heat fluxes out of the ocean south of the KOE but also drive an anomalous cyclonic ocean circulation that brings colder (warmer) water into the north (south) of the KOE. The KOE region is consequently cooled due to both the atmospheric and oceanic effects. Such processes are demonstrated through idealized perturbation experiments using an ocean model. The results herein point to reducing atmospheric model errors in the westerly jet as the way forward to improve the coupled simulations around the KOE region.

Zhou, WY, Xie SP.  2018.  A hierarchy of idealized monsoons in an intermediate GCM. Journal of Climate. 31:9021-9036.   10.1175/jcli-d-18-0084.1   AbstractWebsite

A hierarchy of idealized monsoons with increased degrees of complexity is built using an intermediate model with simplified physics and idealized land-sea geometry. This monsoon hierarchy helps formulate a basic understanding about the distribution of the surface equivalent potential temperature (e), which proves to provide a general guide on the monsoon rainfall. The zonally uniform monsoon in the simplest aquaplanet simulations is explained by a linearized model of the meridional distribution of (e), which is driven by the seasonally varying solar insolation and damped by both the monsoon overturning circulation and the local negative feedback. The heat capacities of the surface and the atmosphere give rise to an intrinsic time scale that causes the monsoon migration to lag behind the sun and reduces the monsoon extent and intensity. Monsoons with a zonally confined continent can be understood based on the zonally uniform monsoon by considering the ocean influence on the land through the westerly jet advection, which reduces the monsoon extent and induces zonal asymmetry. Monsoon responses to more realistic factors such as land geometry, albedo, and ocean heat flux are consistently predicted by their impacts on the surface (e) distribution. The soil moisture effect, however, does not fully fit into the surface (e) argument and provides additional control on monsoon rainfall by inducing regional circulation and rainfall patterns.

Zhou, ZQ, Zhang RH, Xie SP.  2019.  Interannual variability of summer surface air temperature over central India: Implications for monsoon onset. Journal of Climate. 32:1693-1706.   10.1175/jcli-d-18-0675.1   AbstractWebsite

Year-to-year variability of surface air temperature (SAT) over central India is most pronounced in June. Climatologically over central India, SAT peaks in May, and the transition from the hot premonsoon to the cooler monsoon period takes place around 9 June, associated with the northeastward propagation of intraseasonal convective anomalies from the western equatorial Indian Ocean. Positive (negative) SAT anomalies during June correspond to a delayed (early) Indian summer monsoon onset and tend to occur during post-El Nino summers. On the interannual time scale, positive SAT anomalies of June over central India are associated with positive SST anomalies over both the equatorial eastern-central Pacific and Indian Oceans, representing El Nino effects in developing and decay years, respectively. Although El Nino peaks in winter, the correlations between winter El Nino and Indian SAT peak in the subsequent June, representing a post-El Nino summer capacitor effect associated with positive SST anomalies over the north Indian Ocean. These results have important implications for the prediction of Indian summer climate including both SAT and summer monsoon onset over central India.

Zhou, ZQ, Xie SP, Zheng XT, Liu QY, Wang H.  2014.  Global warming-induced changes in El Nino teleconnections over the North Pacific and North America. Journal of Climate. 27:9050-9064.   10.1175/jcli-d-14-00254.1   AbstractWebsite

El Nino-Southern Oscillation (ENSO) induces climate anomalies around the globe. Atmospheric general circulation model simulations are used to investigate how ENSO-induced teleconnection patterns during boreal winter might change in response to global warming in the Pacific-North American sector. As models disagree on changes in the amplitude and spatial pattern of ENSO in response to global warming, for simplicity the same sea surface temperature (SST) pattern of ENSO is prescribed before and after the climate warming. In a warmer climate, precipitation anomalies intensify and move eastward over the equatorial Pacific during El Nino because the enhanced mean SST warming reduces the barrier to deep convection in the eastern basin. Associated with the eastward shift of tropical convective anomalies, the ENSO-forced Pacific-North American (PNA) teleconnection pattern moves eastward and intensifies under the climate warming. By contrast, the PNA mode of atmospheric internal variability remains largely unchanged in pattern, suggesting the importance of tropical convection in shifting atmospheric teleconnections. As the ENSO-induced PNA pattern shifts eastward, rainfall anomalies are expected to intensify on the west coast of North America, and the El Nino-induced surface warming to expand eastward and occupy all of northern North America. The spatial pattern of the mean SST warming affects changes in ENSO teleconnections. The teleconnection changes are larger with patterned mean warming than in an idealized case where the spatially uniform warming is prescribed in the mean state. The results herein suggest that the eastward-shifted PNA pattern is a robust change to be expected in the future, independent of the uncertainty in changes of ENSO itself.

Zhou, ZQ, Xie SP, Zhang GJ, Zhou WY.  2018.  Evaluating AMIP Skill in Simulating Interannual Variability over the Indo-Western Pacific. Journal of Climate. 31:2253-2265.   10.1175/jcli-d-17-0123.1   AbstractWebsite

Local correlation between sea surface temperature (SST) and rainfall is weak or even negative in summer over the Indo-western Pacific warm pool, a fact often taken as indicative of weak ocean feedback on the atmosphere. An Atmospheric Model Intercomparison Project (AMIP) simulation forced by monthly varying SSTs derived from a parallel coupled general circulation model (CGCM) run is used to evaluate AMIP skills in simulating interannual variability of rainfall. Local correlation of rainfall variability between AMIP and CGCMsimulations is used as a direct metric of AMIP skill. This "perfect model'' approach sidesteps the issue of model biases that complicates the traditional skill metric based on the correlation between AMIP and observations. Despite weak local SST-rainfall correlation, the AMIP-CGCM rainfall correlation exceeds a 95% significance level over most of the Indo-western Pacific warm pool, indicating the importance of remote (e.g., El Nino in the equatorial Pacific) rather than local SST forcing. Indeed, the AMIP successfully reproduces large-scale modes of rainfall variability over the Indo-western Pacific warm pool. Compared to the northwest Pacific east of the Philippines, the AMIP-CGCMrainfall correlation is low from the Bay of Bengal through the South China Sea, limited by internal variability of the atmosphere that is damped in CGCM by negative feedback from the ocean. Implications for evaluating AMIP skill in simulating observations are discussed.

Zhuang, W, Xie S-P, Wang D, Taguchi B, Aiki H, Sasaki H.  2010.  Intraseasonal variability in sea surface height over the South China Sea. Journal of Geophysical Research-Oceans. 115   10.1029/2009jc005647   Abstract
n/a
Zinke, J, Rountrey A, Feng M, Xie SP, Dissard D, Rankenburg K, Lough JM, McCulloch MT.  2014.  Corals record long-term Leeuwin current variability including Ningaloo Nino/Nina since 1795. Nature Communications. 5   10.1038/ncomms4607   AbstractWebsite

Variability of the Leeuwin current (LC) off Western Australia is a footprint of interannual and decadal climate variations in the tropical Indo-Pacific. La Nina events often result in a strengthened LC, high coastal sea levels and unusually warm sea surface temperatures (SSTs), termed Ningaloo Nino. The rarity of such extreme events and the response of the southeastern Indian Ocean to regional and remote climate forcing are poorly understood owing to the lack of long-term records. Here we use well-replicated coral SST records from within the path of the LC, together with a reconstruction of the El Nino-Southern Oscillation to hindcast historical SST and LC strength from 1795 to 2010. We show that interannual and decadal variations in SST and LC strength characterized the past 215 years and that the most extreme sea level and SST anomalies occurred post 1980. These recent events were unprecedented in severity and are likely aided by accelerated global ocean warming and sea-level rise.