Publications

Export 13 results:
Sort by: [ Author  (Asc)] Title Type Year
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
C
Cai, WJ, Wu LX, Lengaigne M, Li T, McGregor S, Kug JS, Yu JY, Stuecker MF, Santoso A, Li XC, Ham YG, Chikamoto Y, Ng B, McPhaden MJ, Du Y, Dommenget D, Jia F, Kajtar JB, Keenlyside N, Lin XP, Luo JJ, Martin-Rey M, Ruprich-Robert Y, Wang GJ, Xie SP, Yang Y, Kang SM, Choi JY, Gan BL, Kim GI, Kim CE, Kim S, Kim JH, Chang P.  2019.  Pantropical climate interactions. Science. 363:944-+.   10.1126/science.aav4236   AbstractWebsite

The El Nino-Southern Oscillation (ENSO), which originates in the Pacific, is the strongest and most well-known mode of tropical climate variability. Its reach is global, and it can force climate variations of the tropical Atlantic and Indian Oceans by perturbing the global atmospheric circulation. Less appreciated is how the tropical Atlantic and Indian Oceans affect the Pacific. Especially noteworthy is the multidecadal Atlantic warming that began in the late 1990s, because recent research suggests that it has influenced Indo-Pacific climate, the character of the ENSO cycle, and the hiatus in global surface warming. Discovery of these pantropical interactions provides a pathway forward for improving predictions of climate variability in the current climate and for refining projections of future climate under different anthropogenic forcing scenarios.

Chang, CH, Xie SP, Schneider N, Qiu B, Small J, Zhuang W, Taguchi B, Sasaki H, Lin XP.  2012.  East Pacific ocean eddies and their relationship to subseasonal variability in Central American wind jets. Journal of Geophysical Research-Oceans. 117   10.1029/2011jc007315   Abstract

Subseasonal variability in sea surface height (SSH) over the East Pacific warm pool off Central America is investigated using satellite observations and an eddy-resolving ocean general circulation model. SSH variability is organized into two southwest-tilted bands on the northwest flank of the Tehuantepec and Papagayo wind jets and collocated with the thermocline troughs. Eddy-like features of wavelength similar to 600 km propagate southwestward along the high-variance bands at a speed of 9-13 cm/s. Wind fluctuations are important for eddy formation in the Gulf of Tehuantepec, with a recurring interval of 40-90 days. When forced by satellite wind observations, the model reproduces the two high-variance bands and the phase propagation of the Tehuantepec eddies. Our observational analysis and model simulation suggest the following evolution of the Tehuantepec eddies. On the subseasonal timescale, in response to the gap wind intensification, a coastal anticyclonic eddy forms on the northwest flank of the wind jet and strengthens as it propagates offshore in the following two to three weeks. An energetics analysis based on the model simulation indicates that besides wind work, barotropic and baroclinic instabilities of the mean flow are important for the eddy growth. Both observational and model results suggest a re-intensification of the anticyclonic eddy in response to the subsequent wind jet event. Off Papagayo, ocean eddy formation is not well correlated with local wind jet variability. In both the Gulfs of Tehuantepec and Papagayo, subseasonal SSH variability is preferentially excited on the northwest flank of the wind jet. Factors for this asymmetry about the wind jet axis as well as the origins of wind jet variability are discussed.

Chelton, DB, Xie S-P.  2010.  COUPLED OCEAN-ATMOSPHERE INTERACTION AT OCEANIC MESOSCALES. Oceanography. 23:52-69. Abstract
n/a
Cheng, X, Xie S-P, Tokinaga H, Du Y.  2011.  Interannual Variability of High-Wind Occurrence over the North Atlantic. Journal of Climate. 24:6515-6527.   10.1175/2011jcli4147.1   Abstract
n/a
Cheng, XH, Xie SP, Du Y, Wang J, Chen X, Wang J.  2016.  Interannual-to-decadal variability and trends of sea level in the South China Sea. Climate Dynamics. 46:3113-3126.   10.1007/s00382-015-2756-1   AbstractWebsite

Interannual-to-decadal variability and trends of sea level in the South China Sea (SCS) are studied using altimetric data during 1993-2012 and reconstructed sea level data from 1950-2009. The interannual variability shows a strong seasonality. Surface wind anomalies associated with El Nio-Southern Oscillation explain the sea-level anomaly pattern in the interior SCS, while Rossby waves radiated from the eastern boundary dominate the sea-level variability in the eastern SCS. Decadal variability of sea level in the SCS follows that in the western tropical Pacific, with large variance found west of Luzon Island. Local atmospheric forcing makes a negative contribution to decadal variability in the central SCS, and Rossby waves radiated from the eastern boundary appear to be important. During 1993-2012, decadal sea level averaged in the SCS is significantly correlated with the Pacific Decadal Oscillation (PDO) (r = -0.96). The decadal variability associated with the PDO accounts for most part of sea-level trends in the SCS in the last two decades.

Chikamoto, Y, Timmermann A, Luo JJ, Mochizuki T, Kimoto M, Watanabe M, Ishii M, Xie SP, Jin FF.  2015.  Skilful multi-year predictions of tropical trans-basin climate variability. Nature Communications. 6   10.1038/ncomms7869   AbstractWebsite

Tropical Pacific sea surface temperature anomalies influence the atmospheric circulation, impacting climate far beyond the tropics. The predictability of the corresponding atmospheric signals is typically limited to less than 1 year lead time. Here we present observational and modelling evidence for multi-year predictability of coherent trans-basin climate variations that are characterized by a zonal seesaw in tropical sea surface temperature and sea-level pressure between the Pacific and the other two ocean basins. State-of-the-art climate model forecasts initialized from a realistic ocean state show that the low-frequency trans-basin climate variability, which explains part of the El Nino Southern Oscillation flavours, can be predicted up to 3 years ahead, thus exceeding the predictive skill of current tropical climate forecasts for natural variability. This low-frequency variability emerges from the synchronization of ocean anomalies in all basins via global reorganizations of the atmospheric Walker Circulation.

Chow, CH, Liu QY, Xie SP.  2015.  Effects of Kuroshio Intrusions on the atmosphere northeast of Taiwan Island. Geophysical Research Letters. 42:1465-1470.   10.1002/2014gl062796   AbstractWebsite

The Kuroshio loses bathymetric support off northeast Taiwan Island, causing large variability in its path. The resultant covariability of sea surface temperature (SST) and the lower atmosphere is investigated using satellite observations. In winter and spring off northeast Taiwan Island, the intrusions of warm Kuroshio water onto the continental shelf cause a large increase in local SST, intensify the northeasterly monsoonal winds, and lead to the increases in water vapor and rainfall. Key to this air-sea interaction is the existence of anomalous heat advection by the Kuroshio intrusions. The Kuroshio intrusions are partly due to westward propagating ocean eddies east of Taiwan Island with a lead time of 3weeks, hinting at the possibility of improved weather prediction near northeast Taiwan Island by considering ocean variability east of Taiwan Island.

Chowdary, JS, Xie S-P, Luo J-J, Hafner J, Behera S, Masumoto Y, Yamagata T.  2011.  Predictability of Northwest Pacific climate during summer and the role of the tropical Indian Ocean. Climate Dynamics. 36:607-621.   10.1007/s00382-009-0686-5   Abstract
n/a
Chowdary, JS, Xie S-P, Tokinaga H, Okumura YM, Kubota H, Johnson N, Zheng X-T.  2012.  Interdecadal Variations in ENSO Teleconnection to the Indo-Western Pacific for 1870-2007. Journal of Climate. 25:1722-1744.   10.1175/jcli-d-11-00070.1   Abstract
n/a
Chowdary, JS, Xie S-P, Lee J-Y, Kosaka Y, Wang B.  2010.  Predictability of summer northwest Pacific climate in 11 coupled model hindcasts: Local and remote forcing. Journal of Geophysical Research-Atmospheres. 115   10.1029/2010jd014595   Abstract
n/a
Collins, M, Minobe S, Barreiro M, Bordoni S, Kaspi Y, Kuwano-Yoshida A, Keenlyside N, Manzini E, O'Reilly CH, Sutton R, Xie SP, Zolina O.  2018.  Challenges and opportunities for improved understanding of regional climate dynamics. Nature Climate Change. 8:101-108.   10.1038/s41558-017-0059-8   AbstractWebsite

Dynamical processes in the atmosphere and ocean are central to determining the large-scale drivers of regional climate change, yet their predictive understanding is poor. Here, we identify three frontline challenges in climate dynamics where significant progress can be made to inform adaptation: response of storms, blocks and jet streams to external forcing; basin-to-basin and tropical-extratropical teleconnections; and the development of non-linear predictive theory. We highlight opportunities and techniques for making immediate progress in these areas, which critically involve the development of high-resolution coupled model simulations, partial coupling or pacemaker experiments, as well as the development and use of dynamical metrics and exploitation of hierarchies of models.

Cronin, MF, Xie SP, Hashizume H.  2003.  Barometric pressure variations associated with Eastern Pacific tropical instability waves. Journal of Climate. 16:3050-3057. Abstract
n/a