Publications

Export 308 results:
Sort by: Author Title Type [ Year  (Desc)]
2019
Wang, H, Xie SP, Kosaka Y, Liu QY, Du Y.  2019.  Dynamics of Asian summer monsoon response to anthropogenic aerosol forcing. Journal of Climate. 32:843-858.   10.1175/jcli-d-18-0386.1   AbstractWebsite

Anthropogenic aerosols partially mask the greenhouse warming and cause the reduction in Asian summer monsoon precipitation and circulation. By decomposing the atmospheric change into the direct atmospheric response to radiative forcing and sea surface temperature (SST)-mediated change, the physical mechanisms for anthropogenic-aerosol-induced changes in the East Asian summer monsoon (EASM) and South Asian summer monsoon (SASM) are diagnosed. Using coupled and atmospheric general circulation models, this study shows that the aerosol-induced troposphere cooling over Asian land regions generates anomalous sinking motion between 20 degrees and 40 degrees N and weakens the EASM north of 20 degrees N without SST change. The decreased EASM precipitation and the attendant wind changes are largely due to this direct atmospheric response to radiative forcing, although the aerosol-induced North Pacific SST cooling also contributes. The SST-mediated change dominates the aerosol-induced SASM response, with contributions from both the north-south interhemispheric SST gradient and the local SST cooling pattern over the tropical Indian Ocean. Specifically, with large meridional gradient, the zonal-mean SST cooling pattern is most important for the Asian summer monsoon response to anthropogenic aerosol forcing, resulting in a reorganization of the regional meridional atmospheric overturning circulation. While uncertainty in aerosol radiative forcing has been emphasized in the literature, our results show that the intermodel spread is as large in the SST effect on summer monsoon rainfall, calling for more research into the ocean-atmosphere coupling.

2018
Wang, CY, Xie SP, Kosaka Y.  2018.  Indo-Western Pacific Climate Variability: ENSO Forcing and Internal Dynamics in a Tropical Pacific Pacemaker Simulation. Journal of Climate. 31:10123-10139.   10.1175/jcli-d-18-0203.1   AbstractWebsite

El Nino-Southern Oscillation (ENSO) peaks in boreal winter but its impact on Indo-western Pacific climate persists for another two seasons. Key ocean-atmosphere interaction processes for the ENSO effect are investigated using the Pacific Ocean-Global Atmosphere (POGA) experiment with a coupled general circulation model, where tropical Pacific sea surface temperature (SST) anomalies are restored to follow observations while the atmosphere and oceans are fully coupled elsewhere. The POGA shows skills in simulating the ENSO-forced warming of the tropical Indian Ocean and an anomalous anticyclonic circulation pattern over the northwestern tropical Pacific in the post-El Nino spring and summer. The 10-member POGA ensemble allows decomposing Indo-western Pacific variability into the ENSO forced and ENSO-unrelated (internal) components. Internal variability is comparable to the ENSO forcing in magnitude and independent of ENSO amplitude and phase. Random internal variability causes apparent decadal modulations of ENSO correlations over the Indo-western Pacific, which are high during epochs of high ENSO variance. This is broadly consistent with instrumental observations over the past 130 years as documented in recent studies. Internal variability features a sea level pressure pattern that extends into the north Indian Ocean and is associated with coherent SST anomalies from the Arabian Sea to the western Pacific, suggestive of ocean-atmosphere coupling.

Stuecker, MF, Bitz CM, Armour KC, Proistosescu C, Kang SM, Xie SP, Kim D, McGregor S, Zhang WJ, Zhao S, Cai WJ, Dong Y, Jin FF.  2018.  Polar amplification dominated by local forcing and feedbacks. Nature Climate Change. 8:1076-+.   10.1038/s41558-018-0339-y   AbstractWebsite

The surface temperature response to greenhouse gas forcing displays a characteristic pattern of polar-amplified warming(1-5), particularly in the Northern Hemisphere. However, the causes of this polar amplification are still debated. Some studies highlight the importance of surface-albedo feedback(6-8), while others find larger contributions from longwave feedbacks(4,9,10), with changes in atmospheric and oceanic heat transport also thought to play a role(11-16). Here, we determine the causes of polar amplification using climate model simulations in which CO2 forcing is prescribed in distinct geographical regions, with the linear sum of climate responses to regional forcings replicating the response to global forcing. The degree of polar amplification depends strongly on the location of CO2 forcing. In particular, polar amplification is found to be dominated by forcing in the polar regions, specifically through positive local lapse-rate feedback, with ice-albedo and Planck feedbacks playing subsidiary roles. Extra-polar forcing is further shown to be conducive to polar warming, but given that it induces a largely uniform warming pattern through enhanced poleward heat transport, it contributes little to polar amplification. Therefore, understanding polar amplification requires primarily a better insight into local forcing and feedbacks rather than extra-polar processes.

Zhou, WY, Xie SP.  2018.  A hierarchy of idealized monsoons in an intermediate GCM. Journal of Climate. 31:9021-9036.   10.1175/jcli-d-18-0084.1   AbstractWebsite

A hierarchy of idealized monsoons with increased degrees of complexity is built using an intermediate model with simplified physics and idealized land-sea geometry. This monsoon hierarchy helps formulate a basic understanding about the distribution of the surface equivalent potential temperature (e), which proves to provide a general guide on the monsoon rainfall. The zonally uniform monsoon in the simplest aquaplanet simulations is explained by a linearized model of the meridional distribution of (e), which is driven by the seasonally varying solar insolation and damped by both the monsoon overturning circulation and the local negative feedback. The heat capacities of the surface and the atmosphere give rise to an intrinsic time scale that causes the monsoon migration to lag behind the sun and reduces the monsoon extent and intensity. Monsoons with a zonally confined continent can be understood based on the zonally uniform monsoon by considering the ocean influence on the land through the westerly jet advection, which reduces the monsoon extent and induces zonal asymmetry. Monsoon responses to more realistic factors such as land geometry, albedo, and ocean heat flux are consistently predicted by their impacts on the surface (e) distribution. The soil moisture effect, however, does not fully fit into the surface (e) argument and provides additional control on monsoon rainfall by inducing regional circulation and rainfall patterns.

Zhang, Y, Xie SP, Kosaka Y, Yang JC.  2018.  Pacific decadal oscillation: Tropical Pacific forcing versus internal variability. Journal of Climate. 31:8265-8279.   10.1175/jcli-d-18-0164.1   AbstractWebsite

The Pacific decadal oscillation (PDO) is the leading mode of sea surface temperature (SST) variability over the North Pacific (north of 20 degrees N). Its South Pacific counterpart (south of 20 degrees S) is the South Pacific decadal oscillation (SPDO). The effects of tropical eastern Pacific (TEP) SST forcing and internal atmospheric variability are investigated for both the PDO and SPDO using a 10-member ensemble tropical Pacific pacemaker experiment. Each member is forced by the historical radiative forcing and observed SST anomalies in the TEP region. Outside the TEP region, the ocean and atmosphere are fully coupled and freely evolve. The TEP-forced PDO (54% variance) and SPDO (46% variance) are correlated in time and exhibit a symmetric structure about the equator, driven by the Pacific-North American (PNA) and Pacific-South American teleconnections, respectively. The internal PDO resembles the TEP-forced component but is related to internal Aleutian low (AL) variability associated with the Northern Hemisphere annular mode and PNA pattern. The internal variability is locally enhanced by barotropic energy conversion in the westerly jet exit region around the Aleutians. By contrast, barotropic energy conversion is weak associated with the internal SPDO, resulting in weak geographical preference of sea level pressure variability. Therefore, the internal SPDO differs from the TEP-forced component, featuring SST anomalies along similar to 60 degrees S in association with the Southern Hemisphere annular mode. The limitations on isolating the internal component from observations are discussed. Specifically, internal PDO variability appears to contribute significantly to the North Pacific regime shift in the 1940s.

Kilpatrick, T, Xie S-P, Miller AJ, Schneider N.  2018.  Satellite observations of enhanced chlorophyll variability in the Southern California Bight. Journal of Geophysical Research: Oceans. 123:7550-7563.   10.1029/2018JC014248   Abstract

Satellite observations from the Moderate Resolution Imaging Spectroradiometer and Sea-viewing Wide Field-of-view Sensor reveal a “tongue” of elevated near-surface chlorophyll that extends into the Southern California Bight from Point Conception. A local chlorophyll maximum at the western edge of the bight, near the Santa Rosa Ridge, indicates that the chlorophyll is not solely due to advection from Point Conception but is enhanced by local upwelling. Chlorophyll in the bight peaks in May and June, in phase with the seasonal cycle of wind stress curl. The spatial structure and seasonal variability suggest that the local chlorophyll maximum is due to a combination of bathymetric influence from the Santa Rosa Ridge and orographic influence from the coastline bend at Point Conception, which causes sharp wind stress curl in the bight. High-resolution glider observations show thermocline doming in May–June, in support of the local upwelling effect. Despite the evidence for local wind stress curl-forced upwelling in the bight, we cannot rule out alternative mechanisms for the local chlorophyll maximum, such as iron supply from the ridge. Covariability between chlorophyll, surface wind stress, and sea surface temperature (SST) indicates that nonseasonal chlorophyll variability in the bight is closely related to SST, but the spatial patterns of SST influence vary by time scale: Subannual chlorophyll variability is linked to local wind-forced upwelling, while interannual chlorophyll variability is linked to large-scale SST variations over the northeast Pacific. This suggests a greater role for nonlocal processes in the bight's low-frequency chlorophyll variability.

Shi, JR, Xie SP, Talley LD.  2018.  Evolving relative importance of the Southern Ocean and North Atlantic in anthropogenic ocean heat uptake. Journal of Climate. 31:7459-7479.   10.1175/jcli-d-18-0170.1   AbstractWebsite

Ocean uptake of anthropogenic heat over the past 15 years has mostly occurred in the Southern Ocean, based on Argo float observations. This agrees with historical simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), where the Southern Ocean (south of 30 degrees S) accounts for 72% +/- 28% of global heat uptake, while the contribution from the North Atlantic north of 30 degrees N is only 6%. Aerosols preferentially cool the Northern Hemisphere, and the effect on surface heat flux over the subpolar North Atlantic opposes the greenhouse gas (GHG) effect in nearly equal magnitude. This heat uptake compensation is associated with weakening (strengthening) of the Atlantic meridional overturning circulation (AMOC) in response to GHG (aerosol) radiative forcing. Aerosols are projected to decline in the near future, reinforcing the greenhouse effect on the North Atlantic heat uptake. As a result, the Southern Ocean, which will continue to take up anthropogenic heat largely through the mean upwelling of water from depth, will be joined by increased relative contribution from the North Atlantic because of substantial AMOC slowdown in the twenty-first century. In the RCP8.5 scenario, the percentage contribution to global uptake is projected to decrease to 48% +/- 8% in the Southern Ocean and increase to 26% +/- 6% in the northern North Atlantic. Despite the large uncertainty in the magnitude of projected aerosol forcing, our results suggest that anthropogenic aerosols, given their geographic distributions and temporal trajectories, strongly influence the high-latitude ocean heat uptake and interhemispheric asymmetry through AMOC change.

Lin, L, Xu YY, Wang ZL, Diao CR, Dong WJ, Xie SP.  2018.  Changes in extreme rainfall over India and China attributed to regional aerosol-cloud interaction during the late 20th century rapid industrialization. Geophysical Research Letters. 45:7857-7865.   10.1029/2018gl078308   AbstractWebsite

Both mean and extreme rainfall decreased over India and Northern China during 1979-2005 at a rate of 0.2%/decade. The aerosol dampening effects on rainfall has also been suggested as a main driver of mean rainfall shift in India and China. Conflicting views, however, exist on whether aerosols enhance or suppress hazardous extreme heavy rainfall. Using Coupled Model Intercomparison Project phase 5 (CMIP5) multimodel ensemble, here we show that only a subset of models realistically reproduces the late-20th-century trend of extreme rainfall for the three major regions in Asia: drying in India and Northern China and wetting in Southern China, all consistent with mean rainfall change. As a common feature, this subset of models includes an explicit treatment of the complex physical processes of aerosol-cloud interaction (i.e., both cloud-albedo and cloud-lifetime effects), while simulation performance deteriorates in models that include only aerosol direct effect or cloud-albedo effect. The enhanced aerosol pollution during this rapid industrialization era is the leading cause of the spatially heterogeneous extreme rainfall change by dimming surface solar radiation, cooling adjacent ocean water, and weakening moisture transport into the continental region, while GHG warming or natural variability alone cannot explain the observed changes. Our results indicate that the projected intensification of regional extreme rainfall during the early-to-mid 21st-century, in response to the anticipated aerosol reduction, may be underestimated in global climate models without detailed treatment of complex aerosol-cloud interaction. Plain Language Summary Over Asia, a robust pattern of drying-wetting-drying trend over three most populated regions (India, South China, and North China, respectively) have been observed in the past few decades. Yet the cause of the 30-year trend is rather unclear, with conflicting arguments on the importance of natural variability, the greenhouse gas, land cover, and aerosols. Most of the previous studies, however, fail to provide a holistic explanation for all three major regions simultaneously. The aerosol-cloud interaction-induced oceanic cooling, as we show here, provides a critical piece in reproducing the past trend. Only a fraction of climate models with complex treatment of aerosol-cloud interaction capture the observed pattern; thus, unconstrained model data set provides biased outlook of extreme rainfall in this region.

Amaya, DJ, Siler N, Xie SP, Miller AJ.  2018.  The interplay of internal and forced modes of Hadley Cell expansion: lessons from the global warming hiatus. Climate Dynamics. 51:305-319.   10.1007/s00382-017-3921-5   AbstractWebsite

The poleward branches of the Hadley Cells and the edge of the tropics show a robust poleward shift during the satellite era, leading to concerns over the possible encroachment of the globe's subtropical dry zones into currently temperate climates. The extent to which this trend is caused by anthropogenic forcing versus internal variability remains the subject of considerable debate. In this study, we use a Joint EOF method to identify two distinct modes of tropical width variability: (1) an anthropogenically-forced mode, which we identify using a 20-member simulation of the historical climate, and (2) an internal mode, which we identify using a 1000-year pre-industrial control simulation. The forced mode is found to be closely related to the top of the atmosphere radiative imbalance and exhibits a long-term trend since 1860, while the internal mode is essentially indistinguishable from the El Nio Southern Oscillation. Together these two modes explain an average of 70% of the interannual variability seen in model "edge indices" over the historical period. Since 1980, the superposition of forced and internal modes has resulted in a period of accelerated Hadley Cell expansion and decelerated global warming (i.e., the "hiatus"). A comparison of the change in these modes since 1980 indicates that by 2013 the signal has emerged above the noise of internal variability in the Southern Hemisphere, but not in the Northern Hemisphere, with the latter also exhibiting strong zonal asymmetry, particularly in the North Atlantic. Our results highlight the important interplay of internal and forced modes of tropical width change and improve our understanding of the interannual variability and long-term trend seen in observations.

Xie, SP, Peng QH, Kamae Y, Zheng XT, Tokinaga H, Wang DX.  2018.  Eastern Pacific ITCZ Dipole and ENSO Diversity. Journal of Climate. 31:4449-4462.   10.1175/jcli-d-17-0905.1   AbstractWebsite

The eastern tropical Pacific features strong climatic asymmetry across the equator, with the intertropical convergence zone (ITCZ) displaced north of the equator most of time. In February- April (FMA), the seasonal warming in the Southern Hemisphere and cooling in the Northern Hemisphere weaken the climatic asymmetry, and a double ITCZ appears with a zonal rainband on either side of the equator. Results from an analysis of precipitation variability reveal that the relative strength between the northern and southern ITCZ varies from one year to another and this meridional seesaw results from ocean-atmosphere coupling. Surprisingly this meridional seesaw is triggered by an El Nino-Southern Oscillation (ENSO) of moderate amplitudes. Although ENSO is originally symmetric about the equator, the asymmetry in the mean climate in the preceding season introduces asymmetric perturbations, which are then preferentially amplified by coupled ocean-atmosphere feedback in FMA when deep convection is sensitive to small changes in cross-equatorial gradient of sea surface temperature. This study shows that moderate ENSO follows a distinct decay trajectory in FMA and southeasterly cross-equatorial wind anomalies cause moderate El Nino to dissipate rapidly as southeasterly cross-equatorial wind anomalies intensify ocean upwelling south of the equator. In contrast, extreme El Nino remains strong through FMA as enhanced deep convection causes westerly wind anomalies to intrude and suppress ocean upwelling in the eastern equatorial Pacific.

Biasutti, M, Voigt A, Boos WR, Braconnot P, Hargreaves JC, Harrison SP, Kang SM, Mapes BE, Scheff J, Schumacher C, Sobel AH, Xie SP.  2018.  Global energetics and local physics as drivers of past, present and future monsoons. Nature Geoscience. 11:392-+.   10.1038/s41561-018-0137-1   AbstractWebsite

Global constraints on momentum and energy govern the variability of the rainfall belt in the intertropical convergence zone and the structure of the zonal mean tropical circulation. The continental-scale monsoon systems are also facets of a momentumand energy-constrained global circulation, but their modern and palaeo variability deviates substantially from that of the intertropical convergence zone. The mechanisms underlying deviations from expectations based on the longitudinal mean budgets are neither fully understood nor simulated accurately. We argue that a framework grounded in global constraints on energy and momentum yet encompassing the complexities of monsoon dynamics is needed to identify the causes of the mismatch between theory, models and observations, and ultimately to improve regional climate projections. In a first step towards this goal, disparate regional processes must be distilled into gross measures of energy flow in and out of continents and between the surface and the tropopause, so that monsoon dynamics may be coherently diagnosed across modern and palaeo observations and across idealized and comprehensive simulations. Accounting for zonal asymmetries in the circulation, land/ocean differences in surface fluxes, and the character of convective systems, such a monsoon framework would integrate our understanding at all relevant scales: from the fine details of how moisture and energy are lifted in the updrafts of thunderclouds, up to the global circulations.

Liu, W, Xie SP.  2018.  An ocean view of the global surface warming hiatus. Oceanography. 31:72-79.   10.5670/oceanog.2018.217   AbstractWebsite

The rate of global mean surface temperature increase slowed during 1998-2012. We review oceanic changes during this global warming hiatus from different but related perspectives. In one perspective, we explore the physical mechanisms for sea surface temperature patterns and highlight the role of natural variability, particularly the Interdecadal Pacific Oscillation (IPO) and the Atlantic Multidecadal Oscillation (AMO) that both have chaotic/random phases. In the other perspective, we investigate how the hiatus relates to changes in energy fluxes at the top of the atmosphere and to the three-dimensional distribution of ocean heat content change on decadal timescales. We find that the recent surface warming hiatus is associated with a transition of the IPO from a positive to negative phase and with heat redistribution between the tropical Pacific and Indian Oceans. The AMO has shifted to a positive phase since the late 1990s, inducing a La Nina-type response over the tropical Pacific via a tropic-wide teleconnection, contributing to the global warming hiatus.

Liu, W, Lu J, Xie SP, Fedorov A.  2018.  Southern Ocean heat uptake, redistribution, and storage in a warming climate: The role of meridional overturning circulation. Journal of Climate. 31:4727-4743.   10.1175/jcli-d-17-0761.1   AbstractWebsite

Climate models show that most of the anthropogenic heat resulting from increased atmospheric CO2 enters the Southern Ocean near 60 degrees S and is stored around 45 degrees S. This heat is transported to the ocean interior by the meridional overturning circulation (MOC) with wind changes playing an important role in the process. To isolate and quantify the latter effect, we apply an overriding technique to a climate model and decompose the total ocean response to CO2 increase into two major components: one due to wind changes and the other due to direct CO2 effect. We find that the poleward-intensified zonal surface winds tend to shift and strengthen the ocean Deacon cell and hence the residual MOC, leading to anomalous divergence of ocean meridional heat transport around 60 degrees S coupled to a surface heat flux increase. In contrast, at 45 degrees S we see anomalous convergence of ocean heat transport and heat loss at the surface. As a result, the wind-induced ocean heat storage (OHS) peaks at 46 degrees S at a rate of 0.07 ZJ yr(-1) (degrees lat)(-1) (1 ZJ = 10(21) J), contributing 20% to the total OHS maximum. The direct CO2 effect, on the other hand, very slightly alters the residual MOC but primarily warms the ocean. It induces a small but nonnegligible change in eddy heat transport and causes OHS to peak at 42 degrees S at a rate of 0.30 ZJ yr(-1) (degrees lat)(-1), accounting for 80% of the OHS maximum. We also find that the eddy-induced MOC weakens, primarily caused by a buoyancy flux change as a result of the direct CO2 effect, and does not compensate the intensified Deacon cell.

Yang, L, Liu JW, Ren ZP, Xie SP, Zhang SP, Gao SH.  2018.  Atmospheric conditions for advection-radiation fog over the western Yellow Sea. Journal of Geophysical Research-Atmospheres. 123:5455-5468.   10.1029/2017jd028088   AbstractWebsite

Advection fog occurs usually when warm and moist air flows over cold sea surface. It is occasionally reported that the fog air temperature falls below sea surface temperature (called here the sea fog with sea surface heating [ssH]) due to longwave radiation cooling at fog top. Using 8-year buoy observations, this study reveals that about 33% of the time, the advection fog is with ssH in the western Yellow Sea. By synthesizing long-term observations from meteorological stations, atmospheric soundings, and offshore buoys, this study further investigates the marine atmospheric boundary layer (MABL) structure and atmospheric circulation associated with the ssH sea fog. Composite analysis shows that a local anomalous high pressure favors widespread formation of the ssH sea fog. The subsidence in the high pressure intensifies the thermal and moist stratification between the MABL and free atmosphere through adiabatic warming. The dry air above helps cool the fog layer by enhancing the longwave radiative cooling at the fog top and the vertical mixing beneath, causing air temperature to drop below sea surface temperature. The ratio of sea fog with ssH to total sea fog decreases from spring to summer as the descending motion and MABL stratification both weaken. This study highlights the importance of longwave radiative cooling at the advection fog top and suggests a way to improve sea fog forecast in the Yellow Sea.

Johnson, NC, Xie SP, Kosaka Y, Li XC.  2018.  Increasing occurrence of cold and warm extremes during the recent global warming slowdown. Nature Communications. 9   10.1038/s41467-018-04040-y   AbstractWebsite

The recent levelling of global mean temperatures after the late 1990s, the so-called global warming hiatus or slowdown, ignited a surge of scientific interest into natural global mean surface temperature variability, observed temperature biases, and climate communication, but many questions remain about how these findings relate to variations in more societally relevant temperature extremes. Here we show that both summertime warm and wintertime cold extreme occurrences increased over land during the so-called hiatus period, and that these increases occurred for distinct reasons. The increase in cold extremes is associated with an atmospheric circulation pattern resembling the warm Arctic-cold continents pattern, whereas the increase in warm extremes is tied to a pattern of sea surface temperatures resembling the Atlantic Multidecadal Oscillation. These findings indicate that large-scale factors responsible for the most societally relevant temperature variations over continents are distinct from those of global mean surface temperature.

Zhou, ZQ, Xie SP, Zhang GJ, Zhou WY.  2018.  Evaluating AMIP Skill in Simulating Interannual Variability over the Indo-Western Pacific. Journal of Climate. 31:2253-2265.   10.1175/jcli-d-17-0123.1   AbstractWebsite

Local correlation between sea surface temperature (SST) and rainfall is weak or even negative in summer over the Indo-western Pacific warm pool, a fact often taken as indicative of weak ocean feedback on the atmosphere. An Atmospheric Model Intercomparison Project (AMIP) simulation forced by monthly varying SSTs derived from a parallel coupled general circulation model (CGCM) run is used to evaluate AMIP skills in simulating interannual variability of rainfall. Local correlation of rainfall variability between AMIP and CGCMsimulations is used as a direct metric of AMIP skill. This "perfect model'' approach sidesteps the issue of model biases that complicates the traditional skill metric based on the correlation between AMIP and observations. Despite weak local SST-rainfall correlation, the AMIP-CGCM rainfall correlation exceeds a 95% significance level over most of the Indo-western Pacific warm pool, indicating the importance of remote (e.g., El Nino in the equatorial Pacific) rather than local SST forcing. Indeed, the AMIP successfully reproduces large-scale modes of rainfall variability over the Indo-western Pacific warm pool. Compared to the northwest Pacific east of the Philippines, the AMIP-CGCMrainfall correlation is low from the Bay of Bengal through the South China Sea, limited by internal variability of the atmosphere that is damped in CGCM by negative feedback from the ocean. Implications for evaluating AMIP skill in simulating observations are discussed.

Collins, M, Minobe S, Barreiro M, Bordoni S, Kaspi Y, Kuwano-Yoshida A, Keenlyside N, Manzini E, O'Reilly CH, Sutton R, Xie SP, Zolina O.  2018.  Challenges and opportunities for improved understanding of regional climate dynamics. Nature Climate Change. 8:101-108.   10.1038/s41558-017-0059-8   AbstractWebsite

Dynamical processes in the atmosphere and ocean are central to determining the large-scale drivers of regional climate change, yet their predictive understanding is poor. Here, we identify three frontline challenges in climate dynamics where significant progress can be made to inform adaptation: response of storms, blocks and jet streams to external forcing; basin-to-basin and tropical-extratropical teleconnections; and the development of non-linear predictive theory. We highlight opportunities and techniques for making immediate progress in these areas, which critically involve the development of high-resolution coupled model simulations, partial coupling or pacemaker experiments, as well as the development and use of dynamical metrics and exploitation of hierarchies of models.

Kang, SM, Shin Y, Xie S-P.  2018.  Extratropical forcing and tropical rainfall distribution: energetics framework and ocean Ekman advection. npj Climate and Atmospheric Science. 1:2.   10.1038/s41612-017-0004-6   Abstract

Intense tropical rainfall occurs in a narrow belt near the equator, called the inter-tropical convergence zone (ITCZ). In the past decade, the atmospheric energy budget has been used to explain changes in the zonal-mean ITCZ position. The energetics framework provides a mechanism for extratropics-to-tropics teleconnections, which have been postulated from paleoclimate records. In atmosphere models coupled with a motionless slab ocean, the ITCZ shifts toward the warmed hemisphere in order for the Hadley circulation to transport energy toward the colder hemisphere. However, recent studies using fully coupled models show that tropical rainfall can be rather insensitive to extratropical forcing when ocean dynamics is included. Here, we explore the effect of meridional Ekman heat advection while neglecting the upwelling effect on the ITCZ response to prescribed extratropical thermal forcing. The tropical component of Ekman advection is a negative feedback that partially compensates the prescribed forcing, whereas the extratropical component is a positive feedback that amplifies the prescribed forcing. Overall, the tropical negative feedback dominates over the extratropical positive feedback. Thus, including Ekman advection reduces the need for atmospheric energy transport, dampening the ITCZ response. We propose to build a hierarchy of ocean models to systematically explore the full dynamical response of the coupled climate system.

2017
Xu, LX, Xie SP, Liu QY, Liu C, Li PL, Lin XP.  2017.  Evolution of the North Pacific subtropical mode water in anticyclonic eddies. Journal of Geophysical Research-Oceans. 122:10118-10130.   10.1002/2017jc013450   AbstractWebsite

Anticyclonic eddies (AEs) trap and transport the North Pacific subtropical mode water (STMW), but the evolution of the STMW trapped in AEs has not been fully studied due to the lack of eddy-tracking subsurface observations. Here we analyze profiles from special-designed Argo floats that follow two STMW-trapping AEs for more than a year. The enhanced daily sampling by these Argo floats swirling around the eddies enables an unprecedented investigation into the structure and evolution of the trapped STMW. In the AEs, the upper (lower) thermocline domes up ( concaves downward), and this lens-shaped double thermocline encompasses the thick STMW within the eddy core. The lighter STMW (25.0 similar to 25.2 sigma(theta)) trapped in AEs dissipates quickly after the formation in winter because of the deepening seasonal thermocline, but the denser STMW (25.2 similar to 25.4 sigma(theta)) remains largely unchanged except when the AE passes across the Izu Ridge. The enhanced diapycnal mixing over the ridge weakens the denser STMW appreciably. While many AEs decay upon hitting the ridge, some pass through a bathymetric gap between the Hachijojima and Bonin Islands, forming a cross- ridge pathway for STMW transport. By contrast, the North Pacific Intermediate Water (NPIW) underneath is deeper than the eddy trapping depth (600 m), and hence left behind east of the Izu Ridge. In Argo climatology, the shallow STMW (< 400 m) intrudes through the gap westward because of the eddy transport, while the NPIW (800 m) is blocked by the Izu Ridge.

Hu, KM, Xie SP, Huang G.  2017.  Orographically Anchored El Nino Effect on Summer Rainfall in Central China. Journal of Climate. 30:10037-10045.   10.1175/jcli-d-17-0312.1   AbstractWebsite

Year-to-year variations in summer precipitation have great socioeconomic impacts on China. Historical rainfall variability over China is investigated using a newly released high-resolution dataset. The results reveal summer-mean rainfall anomalies associated with ENSO that are anchored by mountains in central China east of the Tibetan Plateau. These orographically anchored hot spots of ENSO influence are poorly represented in coarse-resolution datasets so far in use. In post-El Nino summers, an anomalous anticyclone forms over the tropical northwest Pacific, and the anomalous southwesterlies on the northwest flank cause rainfall to increase in mountainous central China through orographic lift. At upper levels, the winds induce additional adiabatic updraft by increasing the eastward advection of warm air from Tibet. In post-El Nino summers, large-scale moisture convergence induces rainfall anomalies elsewhere over flat eastern China, which move northward from June to August and amount to little in the seasonal mean.

Siler, N, Kosaka Y, Xie SP, Li XC.  2017.  Tropical ocean contributions to California's surprisingly dry El Nino of 2015/16. Journal of Climate. 30:10067-10079.   10.1175/jcli-d-17-0177.1   AbstractWebsite

The major El Nino of 2015/16 brought significantly less precipitation to California than previous events of comparable strength, much to the disappointment of residents suffering through the state's fourth consecutive year of severe drought. Here, California's weak precipitation in 2015/16 relative to previous major El Nino events is investigated within a 40-member ensemble of atmosphere-only simulations run with historical sea surface temperatures (SSTs) and constant radiative forcing. The simulations reveal significant differences in both California precipitation and the large-scale atmospheric circulation between 2015/16 and previous strong El Nino events, which are similar to (albeit weaker than) the differences found in observations. Principal component analysis indicates that these ensemble-mean differences were likely related to a pattern of tropical SST variability with a strong signal in the Indian Ocean and western Pacific and a weaker signal in the eastern equatorial Pacific and subtropical North Atlantic. This SST pattern was missed by the majority of forecast models, which could partly explain their erroneous predictions of above-average precipitation in California in 2015/16.

Kamae, Y, Li XC, Xie SP, Ueda H.  2017.  Atlantic effects on recent decadal trends in global monsoon. Climate Dynamics. 49:3443-3455.   10.1007/s00382-017-3522-3   AbstractWebsite

Natural climate variability contributes to recent decadal climate trends. Specifically the trends during the satellite era since 1979 include Atlantic and Indian Ocean warming and Pacific cooling associated with phase shifts of the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation, and enhanced global monsoon (GM) circulation and rainfall especially in the Northern Hemisphere. Here we evaluate effects of the oceanic changes on the global and regional monsoon trends by partial ocean temperature restoring experiments in a coupled atmosphere-ocean general circulation model. Via trans-basin atmosphere-ocean teleconnections, the Atlantic warming drives a global pattern of sea surface temperature change that resembles observations, giving rise to the enhanced GM. The tropical Atlantic warming and the resultant Indian Ocean warming favor subtropical deep-tropospheric warming in both hemispheres, resulting in the enhanced monsoon circulations and precipitation over North America, South America and North Africa. The extratropical North Atlantic warming makes an additional contribution to the monsoon enhancement via Eurasian continent warming and resultant land-sea thermal gradient over Asia. The results of this study suggest that the Atlantic multidecadal variability can explain a substantial part of global climate variability including the recent decadal trends of GM.

Kamae, Y, Mei W, Xie SP.  2017.  Climatological relationship between warm season atmospheric rivers and heavy rainfall over East Asia. Journal of the Meteorological Society of Japan. 95:411-431.   10.2151/jmsj.2017-027   AbstractWebsite

Eddy transport of atmospheric,ater vapor from the tropics is important for rainfall and related natural disasters in the middle latitudes. Atmospheric rivers (ARs), intense moisture plumes that are typically associated with extratropical cyclones, often produce heavy precipitation upon encountering topography on the west coasts of mid-latitude North America and Europe. ARs also occur over the northwestern Pacific and sometimes cause floods and landslides over East Asia, but the climatological relationship between ARs and heavy rainfall in this region remains unclear. Here we evaluate the contribution of ARs to the hydrological cycle over East Asia using high-resolution daily rainfall observations and an atmospheric reanalysis during 1958-2007. Despite their low occurrence, ARs account for 14-44 % of the total rainfall and 20-90 % of extreme heavy-rainfall events during spring, summer, and autumn. AR-related extreme rainfall is especially pronounced over western-to-southeastern slopes of terrains over the Korean Peninsula and Japan, owing to strong orographic effects and a stable direction of low-level moisture flows. A strong relationship between warm-season AR heavy rainfall and preceding-winter El Nino is identified since the 1970s, suggesting the potential of predicting heavy-rainfall risk over Korea and Japan at seasonal leads.

Ma, J, Xie SP, Xu HM.  2017.  Contributions of the North Pacific Meridional Mode to Ensemble Spread of ENSO Prediction. Journal of Climate. 30:9167-9181.   10.1175/jcli-d-17-0182.1   AbstractWebsite

Seasonal prediction of El Nino-Southern Oscillation (ENSO) employs the ensemble method, which samples the uncertainty in initial conditions. While much attention has been given to the ensemble mean, the ensemble spread limits the reliability of the forecast. Spatiotemporal coevolution of intermember anomalies of sea surface temperature (SST) and low-level winds over the Pacific is examined in ensemble hindcasts. Two types of evolution of intermember SST anomalies in the equatorial Pacific are identified. The first features an apparent southwestward propagation of the SST spread from the subtropical northeastern Pacific southeast of Hawaii to the central equatorial Pacific in boreal winter-spring, indicative of the precursor effect of the North Pacific meridional mode (NPMM) on ENSO variability. Extratropical atmospheric variability generates ensemble spread in ENSO through wind-evaporation-SST (WES) in the subtropical northeastern Pacific and then Bjerknes feedback on the equator. In the second type, ensemble spread grows in the equatorial Pacific with a weak contribution from the subtropical southeastern Pacific in summer. Thus, the extratropical influence on ENSO evolution is much stronger in the Northern Hemisphere than in the Southern Hemisphere. The growth of Nino-4 SST ensemble spread shows a strong seasonality. In hindcasts initialized in September-March, the Nino-4 SST spread grows rapidly in January-April, stabilizes in May-June, and grows again in July-September. The rapid growth of the Nino-4 SST spread in January-April is due to the arrival of NPMM, while the slowdown in May-June and rapid growth in July-September are attributable primarily to the seasonality of equatorial ocean-atmosphere interaction. NPMM contributes to the ensemble spread in equatorial Pacific SST, limiting the reliability of ENSO prediction.

Merrifield, A, Lehner F, Xie SP, Deser C.  2017.  Removing Circulation Effects to Assess Central US Land-Atmosphere Interactions in the CESM Large Ensemble. Geophysical Research Letters. 44:9938-9946.   10.1002/2017gl074831   AbstractWebsite

Interannual variability of summer surface air temperature (SAT) in the central United States (U.S.) is influenced by atmospheric circulation and land surface feedbacks. Here a method of dynamical adjustment is used to remove the effects of circulation on summer SAT variability over North America in the Community Earth System Model Large Ensemble. The residual SAT variability is shown to reflect thermodynamic feedbacks associated with land surface conditions. In particular, the central U.S. is a hot spot of land-atmosphere interaction, with residual SAT accounting for more than half of the total SAT variability. Within the hot spot, residual SAT anomalies show higher month-to-month persistence through the warm season and a redder spectrum than dynamically induced SAT anomalies. Residual SAT variability in this region is also shown to be related to preseason soil moisture conditions, surface flux variability, and local atmospheric pressure anomalies.