Export 71 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Baumann-Pickering, S, Simonis AE, Oleson EM, Baird RW, Roch MA, Wiggins SM.  2015.  False killer whale and short-finned pilot whale acoustic identification. Endangered Species Research. 28:97-108.   10.3354/esr00685   Abstract

ABSTRACT: False killer whales Pseudorca crassidens and short-finned pilot whales Globicephala macrorhynchus are known to interact with long-line fishing gear in Hawaiian waters, causing economic loss and leading to whale injuries and deaths. The main Hawaiian Islands’ insular population of false killer whales is listed as endangered and the offshore population is considered ‘strategic’ under the Marine Mammal Protection Act due to relatively high bycatch levels. Discriminating between these species acoustically is problematic due to similarity in the spectral content of their echolocation clicks. We used passive acoustic monitoring along with data from satellite tags to distinguish signals from these 2 species. Acoustic encounters recorded with autonomous instruments offshore of the islands of Hawai‘i and Kaua‘i were matched with concurrent and nearby location information obtained from satellite tagged individuals. Two patterns of echolocation clicks were established for the 2 species. The overall spectral click parameters were highly similar (22 kHz peak and 25 kHz center frequency), but false killer whales had shorter duration and broader bandwidth clicks than short-finned pilot whales (225 µs, 8 kHz [-3 dB bandwidth] and 545 µs, 4 kHz, respectively). Also, short-finned pilot whale clicks showed distinct spectral peaks at 12 and 18 kHz. Automated classification techniques using Gaussian mixture models had a 6.5% median error rate. Based on these findings for echolocation clicks and prior published work on whistle classification, acoustic encounters of false killer whales and short-finned pilot whales on autonomous instruments should be identifiable to species level, leading to better long-term monitoring with the goal of mitigating bycatch.

Baumann-Pickering, S, Wiggins SM, Roth EH, Roch MA, Schnitzler HU, Hildebrand JA.  2010.  Echolocation signals of a beaked whale at Palmyra Atoll. Journal of the Acoustical Society of America. 127:3790-9.   10.1121/1.3409478   AbstractWebsite

Acoustic recordings from Palmyra Atoll, northern Line Islands, central Pacific, showed upsweep frequency modulated pulses reminiscent of those produced by beaked whales. These signals had higher frequencies, broader bandwidths, longer pulse durations and shorter inter-pulse intervals than previously described pulses of Blainville's, Cuvier's and Gervais' beaked whales [Zimmer et al. (2005). J. Acoust. Soc. Am. 117, 3919-3927; Johnson et al. (2006). J. Exp. Biol. 209, 5038-5050; Gillespie et al. (2009). J. Acoust. Soc. Am. 125, 3428-3433]. They were distinctly different temporally and spectrally from the unknown beaked whale at Cross Seamount, HI [McDonald et al. (2009). J. Acoust. Soc. Am. 125, 624-627]. Genetics on beaked whale specimens found at Palmyra Atoll suggest the presence of a poorly known beaked whale species. Mesoplodon sp. might be the source of the FM pulses described in this paper. The Palmyra Atoll FM pulse peak frequency was at 44 kHz with a -10 dB bandwidth of 26 kHz. Mean pulse duration was 355 mus and inter-pulse interval was 225 ms, with a bimodal distribution. Buzz sequences were detected with inter-pulse intervals below 20 ms and unmodulated spectra, with about 20 dB lower amplitude than prior FM pulses. These clicks had a 39 kHz bandwidth (-10 dB), peak frequency at 37 kHz, click duration 155 mus, and inter-click interval between 4 and 10 ms.

Baumann-Pickering, S, Roch MA, Brownell RL, Simonis AE, McDonald MA, Solsona-Berga A, Oleson EM, Wiggins SM, Hildebrand JA.  2014.  Spatio-temporal patterns of beaked whale echolocation signals in the North Pacific. Plos One. 9   10.1371/journal.pone.0086072   AbstractWebsite

At least ten species of beaked whales inhabit the North Pacific, but little is known about their abundance, ecology, and behavior, as they are elusive and difficult to distinguish visually at sea. Six of these species produce known species-specific frequency modulated (FM) echolocation pulses: Baird's, Blainville's, Cuvier's, Deraniyagala's, Longman's, and Stejneger's beaked whales. Additionally, one described FM pulse (BWC) from Cross Seamount, Hawai'i, and three unknown FM pulse types (BW40, BW43, BW70) have been identified from almost 11 cumulative years of autonomous recordings at 24 sites throughout the North Pacific. Most sites had a dominant FM pulse type with other types being either absent or limited. There was not a strong seasonal influence on the occurrence of these signals at any site, but longer time series may reveal smaller, consistent fluctuations. Only the species producing BWC signals, detected throughout the Pacific Islands region, consistently showed a diel cycle with nocturnal foraging. By comparing stranding and sighting information with acoustic findings, we hypothesize that BWC signals are produced by ginkgo-toothed beaked whales. BW43 signal encounters were restricted to Southern California and may be produced by Perrin's beaked whale, known only from Californian waters. BW70 signals were detected in the southern Gulf of California, which is prime habitat for Pygmy beaked whales. Hubb's beaked whale may have produced the BW40 signals encountered off central and southern California; however, these signals were also recorded off Pearl and Hermes Reef and Wake Atoll, which are well south of their known range.

Baumann-Pickering, S, Simonis AE, Wiggins SM, Brownell RL, Hildebrand JA.  2012.  Aleutian Islands beaked whale echolocation signals. Marine Mammal Science. :-no.   10.1111/j.1748-7692.2011.00550.x   AbstractWebsite

Beaked whales are an elusive group of marine mammals. They are infrequently encountered as they are pelagic, deep diving foragers with short surface intervals between long dives (Tyack et al. 2006). In recent years, research has shown that beaked whales produce frequency modulated (FM) upsweep echolocation signals (Zimmer et al. 2005, Johnson et al. 2006, Gillespie et al. 2009, McDonald et al. 2009, Baumann-Pickering et al. 2010), which appear to be species specific in their spectral and temporal characteristics. Their typical echolocation behavior during foraging consists of FM pulses with very regular interpulse intervals (IPIs) while searching for prey, and discrete click series with short IPIs when closing in on a potential prey target, called a buzz (Johnson et al. 2004, Madsen et al. 2005).

Baumann-Pickering, S, Roch MA, Wiggins SM, Schnitzler HU, Hildebrand JA.  2015.  Acoustic behavior of melon-headed whales varies on a diel cycle. Behavioral Ecology and Sociobiology. 69:1553-1563.   10.1007/s00265-015-1967-0   AbstractWebsite

Many terrestrial and marine species have a diel activity pattern, and their acoustic signaling follows their current behavioral state. Whistles and echolocation clicks on long-term recordings produced by melon-headed whales (Peponocephala electra) at Palmyra Atoll indicated that these signals were used selectively during different phases of the day, strengthening the idea of nighttime foraging and daytime resting with afternoon socializing for this species. Spectral features of their echolocation clicks changed from day to night, shifting the median center frequency up. Additionally, click received levels increased with increasing ambient noise during both day and night. Ambient noise over a wide frequency band was on average higher at night. The diel adjustment of click features might be a reaction to acoustic masking caused by these nighttime sounds. Similar adaptations have been documented for numerous taxa in response to noise. Or it could be, unrelated, an increase in biosonar source levels and with it a shift in center frequency to enhance detection distances during foraging at night. Call modifications in intensity, directionality, frequency, and duration according to echolocation task are well established for bats. This finding indicates that melon-headed whales have flexibility in their acoustic behavior, and they collectively and repeatedly adapt their signals from day- to nighttime circumstances.

Baumann-Pickering, S, Wiggins SM, Hildebrand JA, Roch MA, Schnitzler HU.  2010.  Discriminating features of echolocation clicks of melon-headed whales (Peponocephala electra), bottlenose dolphins (Tursiops truncatus), and Gray's spinner dolphins (Stenella longirostris longirostris). Journal of the Acoustical Society of America. 128:2212-24.   10.1121/1.3479549   AbstractWebsite

Spectral parameters were used to discriminate between echolocation clicks produced by three dolphin species at Palmyra Atoll: melon-headed whales (Peponocephala electra), bottlenose dolphins (Tursiops truncatus) and Gray's spinner dolphins (Stenella longirostris longirostris). Single species acoustic behavior during daytime observations was recorded with a towed hydrophone array sampling at 192 and 480 kHz. Additionally, an autonomous, bottom moored High-frequency Acoustic Recording Package (HARP) collected acoustic data with a sampling rate of 200 kHz. Melon-headed whale echolocation clicks had the lowest peak and center frequencies, spinner dolphins had the highest frequencies and bottlenose dolphins were nested in between these two species. Frequency differences were significant. Temporal parameters were not well suited for classification. Feature differences were enhanced by reducing variability within a set of single clicks by calculating mean spectra for groups of clicks. Median peak frequencies of averaged clicks (group size 50) of melon-headed whales ranged between 24.4 and 29.7 kHz, of bottlenose dolphins between 26.7 and 36.7 kHz, and of spinner dolphins between 33.8 and 36.0 kHz. Discriminant function analysis showed the ability to correctly discriminate between 93% of melon-headed whales, 75% of spinner dolphins and 54% of bottlenose dolphins.

Baumann-Pickering, S, McDonald MA, Simonis AE, Berga AS, Merkens KPB, Oleson EM, Roch MA, Wiggins SM, Rankin S, Yack TM, Hildebrand JA.  2013.  Species-specific beaked whale echolocation signals. The Journal of the Acoustical Society of America. 134:2293-2301. AbstractWebsite

Beaked whale echolocation signals are mostly frequency-modulated (FM) upsweep pulses and appear to be species specific. Evolutionary processes of niche separation may have driven differentiation of beaked whale signals used for spatial orientation and foraging. FM pulses of eight species of beaked whales were identified, as well as five distinct pulse types of unknown species, but presumed to be from beaked whales. Current evidence suggests these five distinct but unidentified FM pulse types are also species-specific and are each produced by a separate species. There may be a relationship between adult body length and center frequency with smaller whales producing higher frequency signals. This could be due to anatomical and physiological restraints or it could be an evolutionary adaption for detection of smaller prey for smaller whales with higher resolution using higher frequencies. The disadvantage of higher frequencies is a shorter detection range. Whales echolocating with the highest frequencies, or broadband, likely lower source level signals also use a higher repetition rate, which might compensate for the shorter detection range. Habitat modeling with acoustic detections should give further insights into how niches and prey may have shaped species-specific FM pulse types.

Baumann-Pickering, S, Trickey JS, Wiggins SM, Oleson EM.  2016.  Odontocete occurrence in relation to changes in oceanography at a remote equatorial Pacific seamount. Marine Mammal Science.   10.1111/mms.12299   Abstract

Seamounts are considered hot spots of biodiversity and can aggregate pelagic predators and their prey. Passive acoustic monitoring was conducted over 3 mo in 2012 to document the occurrence of odontocetes near a seamount chain in the central equatorial Pacific in relation to oceanographic changes over time. Beaked whale echolocation signals were most frequently encountered. The main beaked whale signal was an unknown type, BW38, which resembled signals produced by Blainville's beaked whales. It had high occurrence during high sea surface temperature and low sea surface salinity. Cuvier's beaked whales were the second most detected. They had an opposite pattern and were encountered more often when sea surface temperature was low and net primary productivity was high. Risso's dolphins and short-finned pilot whales had high acoustic densities, and echolocated predominantly at night. Risso's dolphins occurred more often during low sea surface height deviation. False killer whales were less frequently detected and mostly occurred during the day. Sperm whale detections were fewer than expected and associated with high chlorophyll a. Short duration Kogiidae encounters occurred on average every third day. These types of long-term site studies are an informative tool to comparatively assess species composition, relative abundance, and relationship to oceanographic changes.

Baumann-Pickering, S, M. Yack T, Barlow J, Wiggins SM, Hildebrand JA.  2013.  Baird's beaked whale echolocation signals. The Journal of the Acoustical Society of America. 133:4321-4331.   10.1121/1.4804316   AbstractWebsite

Echolocation signals from Baird's beaked whales were recorded during visual and acoustic shipboard surveys of cetaceans in the California Current ecosystem and with autonomous, long-term recorders in the Southern California Bight. The preliminary measurement of the visually validated Baird's beaked whale echolocation signals from towed array data were used as a basis for identifying Baird's signals in the autonomous recorder data. Two distinct signal types were found, one being a beaked whale-like frequency modulated (FM) pulse, the other being a dolphin-like broadband click. The median FM inter-pulse interval was 230 ms. Both signal types showed a consistent multi-peak structure in their spectra with peaks at ∼9, 16, 25, and 40 kHz. Depending on signal type, as well as recording aspect and distance to the hydrophone, these peaks varied in relative amplitude. The description of Baird's echolocation signals will allow for studies of their distribution and abundance using towed array data without associated visual sightings and from autonomous seafloor hydrophones.

Bayless, AR, Oleson EM, Baumann-Pickering S, Simonis AE, Marchetti J, Martin S, Wiggins SM.  2017.  Acoustically monitoring the Hawai'i longline fishery for interactions with false killer whales. Fisheries Research. 190:122-131.   10.1016/j.fishres.2017.02.006   AbstractWebsite

False killer whales (Pseudorca crassidens) feed primarily on several species of large pelagic fish, species that are also targeted by the Hawai'i-permitted commercial deep-set longline fishery. False killer whales have been known to approach fishing lines in an attempt to procure bait or catch from the lines, a behavior known as depredation. This behavior can lead to the hooking or entanglement of an animal, which currently exceeds sustainable levels for pelagic false killer whales in Hawaii. Passive acoustic monitoring (PAM) was used to record false killer whales near longline fishing gear to investigate the timing, rate, and spatial extent of false killer whale occurrence. Acoustic data were collected using small autonomous recorders modified for deployment on the mainline of longline fishing gear. A total of 90 fishing sets were acoustically monitored in 2013 and 2014 on a chartered longline vessel using up to five acoustic recorders deployed throughout the fishing gear. Of the 102 odontocete click and/or whistle bouts detected on 55 sets, 26 bouts detected on 19 different fishing sets were classified as false killer whales with high or medium confidence based on either whistle classification, click classification, or both. The timing of false killer whale acoustic presence near the gear was related to the timing of fishing activities, with 57% of the false killer whale bouts occurring while gear was being hauled, with 50% of those bouts occurring during the first third of the haul. During three fishing sets, false killer whales were detected on more than one recorder, and in all cases the whales were recorded on instruments farther from the fishing vessel as the haul proceeded. Only three of the 19 sets with acoustically-confirmed false killer whale presence showed signs of bait or catch damage by marine mammals, which may relate to the difficulty of reporting depredation. PAM has proven to be a relatively inexpensive and efficient method for monitoring the Hawai'i longline fishery for interactions with false killer whales. (C) 2017 Elsevier B.V. All rights reserved.

Cranford, TW, McKenna MF, Soldevilla MS, Wiggins SM, Goldbogen JA, Shadwick RE, Krysl P, St Leger JA, Hildebrand JA.  2008.  Anatomic geometry of sound transmission and reception in Cuvier's beaked whale (Ziphius cavirostris). Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology. 291:353-378.   10.1002/ar.20652   AbstractWebsite

This study uses remote imaging technology to quantify, compare, and contrast the cephalic anatomy between a neonate female and a young adult male Cuvier's beaked whale. Primary results reveal details of anatomic geometry with implications for acoustic function and diving. Specifically, we describe the juxtaposition of the large pterygoid sinuses, a fibrous venous plexus, and a lipid-rich pathway that connects the acoustic environment to the bony ear complex. We surmise that the large pterygoid air sinuses are essential adaptations for maintaining acoustic isolation and auditory acuity of the ears at depth. In the adult male, an acoustic waveguide lined with pachyosteosclerotic bones is apparently part of a novel transmission pathway for outgoing biosonar signals. Substitution of dense tissue boundaries where we normally find air sacs in delphinoids appears to be a recurring theme in deep-diving beaked whales and sperm whales. The anatomic configuration of the adult male Ziphius forehead resembles an upside-down sperm whale nose and may be its functional equivalent, but the homologous relationships between forehead structures are equivocal. Anat Rec, 291:353-378, 2008. © 2008 Wiley-Liss, Inc.

Frasier, KE, Wiggins SM, Harris D, Marques TA, Thomas L, Hildebrand JA.  2016.  Delphinid echolocation click detection probability on near-seafloor sensors. Journal of the Acoustical Society of America. 140:1918-1930.   10.1121/1.4962279   AbstractWebsite

The probability of detecting echolocating delphinids on a near-seafloor sensor was estimated using two Monte Carlo simulation methods. One method estimated the probability of detecting a single click (cue counting); the other estimated the probability of detecting a group of delphinids (group counting). Echolocation click beam pattern and source level assumptions strongly influenced detectability predictions by the cue counting model. Group detectability was also influenced by assumptions about group behaviors. Model results were compared to in situ recordings of encounters with Risso's dolphin (Grampus griseus) and presumed pantropical spotted dolphin (Stenella attenuata) from a near-seafloor four-channel tracking sensor deployed in the Gulf of Mexico (25.537 degrees N 84.632 degrees W, depth 1220 m). Horizontal detection range, received level and estimated source level distributions from localized encounters were compared with the model predictions. Agreement between in situ results and model predictions suggests that simulations can be used to estimate detection probabilities when direct distance estimation is not available. (C) 2016 Acoustical Society of America.

Frasier, KE, Roch MA, Soldevilla MS, Wiggins SM, Garrison LP, Hildebrand JA.  2017.  Automated classification of dolphin echolocation click types from the Gulf of Mexico. Plos Computational Biology. 13   10.1371/journal.pcbi.1005823   AbstractWebsite

Delphinids produce large numbers of short duration, broadband echolocation clicks which may be useful for species classification in passive acoustic monitoring efforts. A challenge in echolocation click classification is to overcome the many sources of variability to recognize underlying patterns across many detections. An automated unsupervised network-based classification method was developed to simulate the approach a human analyst uses when categorizing click types: Clusters of similar clicks were identified by incorporating multiple click characteristics (spectral shape and inter-click interval distributions) to distinguish within-type from between-type variation, and identify distinct, persistent click types. Once click types were established, an algorithm for classifying novel detections using existing clusters was tested. The automated classification method was applied to a dataset of 52 million clicks detected across five monitoring sites over two years in the Gulf of Mexico (GOM). Seven distinct click types were identified, one of which is known to be associated with an acoustically identifiable delphinid (Risso's dolphin) and six of which are not yet identified. All types occurred at multiple monitoring locations, but the relative occurrence of types varied, particularly between continental shelf and slope locations. Automatically- identified click types from autonomous seafloor recorders without verifiable species identification were compared with clicks detected on sea-surface towed hydrophone arrays in the presence of visually identified delphinid species. These comparisons suggest potential species identities for the animals producing some echolocation click types. The network-based classification method presented here is effective for rapid, unsupervised delphinid click classification across large datasets in which the click types may not be known a priori.

Gassmann, M, Henderson EE, Wiggins SM, Roch MA, Hildebrand JA.  2013.  Offshore killer whale tracking using multiple hydrophone arrays. Journal of the Acoustical Society of America. 134:3513-3521.   10.1121/1.4824162   AbstractWebsite

To study delphinid near surface movements and behavior, two L-shaped hydrophone arrays and one vertical hydrophone line array were deployed at shallow depths (<125 m) from the floating instrument platform R/P FLIP, moored northwest of San Clemente Island in the Southern California Bight. A three-dimensional propagation-model based passive acoustic tracking method was developed and used to track a group of five offshore killer whales (Orcinus orca) using their emitted clicks. In addition, killer whale pulsed calls and high-frequency modulated (HFM) signals were localized using other standard techniques. Based on these tracks sound source levels for the killer whales were estimated. The peak to peak source levels for echolocation clicks vary between 170-205 dB re 1 mu Pa @ 1 m, for HFM calls between 185-193 dB re 1 mu Pa @ 1 m, and for pulsed calls between 146-158 dB re 1 mu Pa @ 1 m. (C) 2013 Acoustical Society of America.

Gassmann, M, Wiggins SM, Hildebrand JA.  2015.  Three-dimensional tracking of Cuvier's beaked whales' echolocation sounds using nested hydrophone arrays. Journal of the Acoustical Society of America. 138:2483-2494.   10.1121/1.4927417   AbstractWebsite

Cuvier's beaked whales (Ziphius cavirostris) were tracked using two volumetric small-aperture (similar to 1 m element spacing) hydrophone arrays, embedded into a large-aperture (similar to 1 km element spacing) seafloor hydrophone array of five nodes. This array design can reduce the minimum number of nodes that are needed to record the arrival of a strongly directional echolocation sound from 5 to 2, while providing enough time-differences of arrivals for a three-dimensional localization without depending on any additional information such as multipath arrivals. To illustrate the capabilities of this technique, six encounters of up to three Cuvier's beaked whales were tracked over a two-month recording period within an area of 20 km(2) in the Southern California Bight. Encounter periods ranged from 11 min to 33 min. Cuvier's beaked whales were found to reduce the time interval between echolocation clicks while alternating between two inter-click-interval regimes during their descent towards the seafloor. Maximum peak-to-peak source levels of 179 and 224 dB re 1 mu Pa @ 1 m were estimated for buzz sounds and on-axis echolocation clicks (directivity index = 30 dB), respectively. Source energy spectra of the on-axis clicks show significant frequency components between 70 and 90 kHz, in addition to their typically noted FM upsweep at 40-60 kHz. (C) 2015 Acoustical Society of America.

Gassmann, M, Wiggins SM, Hildebrand JA.  2017.  Deep-water measurements of container ship radiated noise signatures and directionality. Journal of the Acoustical Society of America. 142:1563-1574.   10.1121/1.5001063   AbstractWebsite

Underwater radiated noise from merchant ships was measured opportunistically from multiple spatial aspects to estimate signature source levels and directionality. Transiting ships were tracked via the Automatic Identification System in a shipping lane while acoustic pressure was measured at the ships' keel and beam aspects. Port and starboard beam aspects were 15 degrees, 30 degrees, and 45 degrees in compliance with ship noise measurements standards [ANSI/ASA S12.64 (2009) and ISO 17208-1 (2016)]. Additional recordings were made at a 10 degrees starboard aspect. Source levels were derived with a spherical propagation (surface-affected) or a modified Lloyd's mirror model to account for interference from surface reflections (surface-corrected). Ship source depths were estimated from spectral differences between measurements at different beam aspects. Results were exemplified with a 4870 and a 10 036 twenty-foot equivalent unit container ship at 40%-56% and 87% of service speeds, respectively. For the larger ship, opportunistic ANSI/ISO broadband levels were 195 (surface-affected) and 209 (surface-corrected) dB re 1 mu Pa-2 1 m. Directionality at a propeller blade rate of 8 Hz exhibited asymmetries in stern-bow (< 6 dB) and port-starboard (< 9 dB) direction. Previously reported broadband levels at 10 degrees aspect from McKenna, Ross, Wiggins, and Hildebrand [(2012b). J. Acoust. Soc. Am. 131, 92-103] may be similar to 12 dB lower than respective surface-affected ANSI/ISO standard derived levels. (C) 2017 Acoustical Society of America.

Guazzo, RA, Helble TA, D’Spain GL, Weller DW, Wiggins SM, Hildebrand JA.  2017.  Migratory behavior of eastern North Pacific gray whales tracked using a hydrophone array. PLOS ONE. 12:e0185585.: Public Library of Science   10.1371/journal.pone.0185585   Abstract

Eastern North Pacific gray whales make one of the longest annual migrations of any mammal, traveling from their summer feeding areas in the Bering and Chukchi Seas to their wintering areas in the lagoons of Baja California, Mexico. Although a significant body of knowledge on gray whale biology and behavior exists, little is known about their vocal behavior while migrating. In this study, we used a sparse hydrophone array deployed offshore of central California to investigate how gray whales behave and use sound while migrating. We detected, localized, and tracked whales for one full migration season, a first for gray whales. We verified and localized 10,644 gray whale M3 calls and grouped them into 280 tracks. Results confirm that gray whales are acoustically active while migrating and their swimming and acoustic behavior changes on daily and seasonal time scales. The seasonal timing of the calls verifies the gray whale migration timing determined using other methods such as counts conducted by visual observers. The total number of calls and the percentage of calls that were part of a track changed significantly over both seasonal and daily time scales. An average calling rate of 5.7 calls/whale/day was observed, which is significantly greater than previously reported migration calling rates. We measured a mean speed of 1.6 m/s and quantified heading, direction, and water depth where tracks were located. Mean speed and water depth remained constant between night and day, but these quantities had greater variation at night. Gray whales produce M3 calls with a root mean square source level of 156.9 dB re 1 μPa at 1 m. Quantities describing call characteristics were variable and dependent on site-specific propagation characteristics.

Henderson, EE, Smith MH, Gassmann M, Wiggins SM, Douglas AB, Hildebrand JA.  2014.  Delphinid behavioral responses to incidental mid-frequency active sonar. Journal of the Acoustical Society of America. 136:2003-2014.   10.1121/1.4895681   AbstractWebsite

Opportunistic observations of behavioral responses by delphinids to incidental mid-frequency active (MFA) sonar were recorded in the Southern California Bight from 2004 through 2008 using visual focal follows, static hydrophones, and autonomous recorders. Sound pressure levels were calculated between 2 and 8 kHz. Surface behavioral responses were observed in 26 groups from at least three species of 46 groups out of five species encountered during MFA sonar incidents. Responses included changes in behavioral state or direction of travel, changes in vocalization rates and call intensity, or a lack of vocalizations while MFA sonar occurred. However, 46% of focal groups not exposed to sonar also changed their behavior, and 43% of focal groups exposed to sonar did not change their behavior. Mean peak sound pressure levels when a behavioral response occurred were around 122 dB re: 1 mu Pa. Acoustic localizations of dolphin groups exhibiting a response gave insight into nighttime movement patterns and provided evidence that impacts of sonar may be mediated by behavioral state. The lack of response in some cases may indicate a tolerance of or habituation to MFA sonar by local populations; however, the responses that occur at lower received levels may point to some sensitization as well. (C) 2014 Acoustical Society of America.

Hildebrand, JA, Baumann-Pickering S, Frasier KE, Trickey JS, Merkens KP, Wiggins SM, McDonald MA, Garrison LP, Harris D, Marques TA, Thomas L.  2015.  Passive acoustic monitoring of beaked whale densities in the Gulf of Mexico. Scientific Reports. 5:16343.: Macmillan Publishers Limited   10.1038/srep16343   Abstract

Beaked whales are deep diving elusive animals, difficult to census with conventional visual surveys. Methods are presented for the density estimation of beaked whales, using passive acoustic monitoring data collected at sites in the Gulf of Mexico (GOM) from the period during and following the Deepwater Horizon oil spill (2010–2013). Beaked whale species detected include: Gervais’ (Mesoplodon europaeus), Cuvier’s (Ziphius cavirostris), Blainville’s (Mesoplodon densirostris) and an unknown species of Mesoplodon sp. (designated as Beaked Whale Gulf — BWG). For Gervais’ and Cuvier’s beaked whales, we estimated weekly animal density using two methods, one based on the number of echolocation clicks, and another based on the detection of animal groups during 5 min time-bins. Density estimates derived from these two methods were in good general agreement. At two sites in the western GOM, Gervais’ beaked whales were present throughout the monitoring period, but Cuvier’s beaked whales were present only seasonally, with periods of low density during the summer and higher density in the winter. At an eastern GOM site, both Gervais’ and Cuvier’s beaked whales had a high density throughout the monitoring period.

Hildebrand, JA, Wiggins SM, Driver JL, Waters MR.  2007.  Rapid seismic reflection imaging at the Clovis period Gault site in central Texas. Archaeological Prospection. 14:245-260.   10.1002/arp.309   AbstractWebsite

Using a modified seismic reflection imaging system with rapid translation of receivers, stratigraphic profiles were collected at the Gault site in central Texas. For rapid data collection, spikeless geophone receivers were placed in sand-filled bags at tight spacing, and these receivers were rapidly pulled along the ground surface between shots. Shots were produced by a small hammer strike to a vertical pipe at 20-cm intervals. High quality ultrashallow seismic reflection profiles were collected at a rate of 25 m h(-1), significantly faster than what is possible with conventional seismic reflection imaging using individually planted geophones. Ground-penetrating radar was attempted, but abandoned owing to the poor penetration of the radar signals in the clay soils present at the Gault site. Electromagnetic induction grids were collected surrounding each seismic reflection profile, and provided information on near-surface ground water. Seismic reflection images of Gault site stratigraphy provided greater depth penetration than accessible from backhoe trenching and coring, and helped to better outline the site geological context. Seismic images reveal coherent reflections at shallow depths (0-2.5 m), and extensive scattering at deeper levels (2.5-8 m), underlain by reflection-free zones. These data are interpreted as clay and gravel layers overlaying palaeostream channels carved into the limestone bedrock. Where comparative data were available, the geophysical findings were corroborated by observations of site stratigraphy in archaeological excavation units, backhoe trenches and cores. Seismic reflection studies at the Gault site revealed a palaeochannel filled with pre-Clovis age sediments. Pre-Clovis age sediments are not known to occur at other locations within the Gault site. They provide a unique opportunity to test for cultural remains of great antiquity. Copyright (C) 2007 John Wiley & Sons, Ltd.

Hildebrand, JA, Wiggins SM, Henkart PC, Conyers LB.  2002.  Comparison of seismic reflection and ground-penetrating radar imaging at the controlled archaeological test site, Champaign, Illinois. Archaeological Prospection. 9:9-21.   10.1002/arp.177   Abstract

Shallow seismic reflection and ground-penetrating radar images were collected at a replicated burial mound in the Controlled Archaeological Test Site (CATS) in Champaign, Illinois. The CATS mound contains a pig burial within a wood-lined crypt at a depth of 1.6–2.4 m. Seismic reflection data were collected from two different energy sources: a small (0.5 kg) hammer for an impulsive source, and a vibrator for a frequency swept source. Seismic data were collected at densely spaced points (5 cm) along a line of 48 geophone receivers. These data were stacked in a common mid-point gather, band-pass filtered, and processed with frequency–wavenumber migration. The seismic image produced by the hammer source was dominated by bodywaves at 120 Hz, whereas the vibrator source image was dominated by surface waves at 70 Hz. Both seismic sources revealed clear reflections from the burial crypt, and placed the top of the crypt at the correct depth with a seismic velocity of 120 m s 1. The bottom of the crypt was poorly defined by the seismic data owing to multiple reflections within the crypt. The vibrator source also revealed a highfrequency (360 Hz) reflector at 2.7 m depth within the mound, perhaps due to a resonant cavity within the pig’s body. Single channel ground-penetrating radar data were processed with the same approach, including band-pass filtering and migration. The radar data reveal clear reflections from the burial crypt. Extremely fast radar velocities (260 mm ns 1) are required in the upper portion of the burial mound to place the top of the crypt at its correct depth. The bottom of the crypt was well defined by ground-penetrating radar, and was located accurately with respect to the top of the crypt with a moderate radar velocity (170 mm ns 1). The application of both seismic reflection and ground-penetrating radar to the same site may be beneficial for improved understanding of their abilities for shallow subsurface imaging. Copyright  2002 John Wiley & Sons, Ltd.

Hildebrand, JA, Frasier KE, Baumann-Pickering S, Wiggins SM, Merkens KP, Garrison LP, Soklevilla MS, McDonald MA.  2019.  Assessing seasonality and density from passive acoustic monitoring of signals presumed to be from pygmy and dwarf sperm whales in the Gulf of Mexico. Frontiers in Marine Science. 6   10.3389/fmars.2019.00066   AbstractWebsite

Pygmy sperm whales (Kogia breviceps) and dwarf sperm whales (Kogia sima) are deep diving cetaceans that commonly strand along the coast of the southeast US, but that are difficult to study visually at sea because of their elusive behavior. Conventional visual surveys are thought to significantly underestimate the presence of Kogia and they have proven difficult to approach for tracking and tagging. An approach is presented for density estimation of signals presumed to be from Kogia spp. based on passive acoustic monitoring data collected at sites in the Gulf of Mexico (GOM) from the period following the Deepwater Horizon oil spill (2010-2013). Both species of Kogia are known to inhabit the GOM, although it is not possible to acoustically separate the two based on available knowledge of their echolocation clicks. An increasing interannual density trend is suggested for animals near the primary zone of impact of the oil spill, and to the southeast of the spill. Densities were estimated based on both counting individual echolocation clicks and counting the presence of groups of animals during one-min time windows. Densities derived from acoustic monitoring at three sites are all substantially higher (4-16 animals/1000 km(2)) than those that have been derived for Kogia from line transect visual surveys in the same region (0.5 animals/1000 km(2)). The most likely explanation for the observed discrepancy is that the visual surveys are underestimating Kogia spp. density, due to the assumption of perfect detectability on the survey trackline. We present an alternative approach for density estimation, one that derives echolocation and behavioral parameters based on comparison of modeled and observed sound received levels at sites of varying depth.

Johnston, DW, McDonald M, Polovina J, Domokos R, Wiggins S, Hildebrand J.  2008.  Temporal patterns in the acoustic signals of beaked whales at Cross Seamount. Biology Letters. 4:208-211.   10.1098/rsbl.2007.0614   AbstractWebsite

Seamounts may influence the distribution of marine mammals through a combination of increased ocean mixing, enhanced local productivity and greater prey availability. To study the effects of seamounts on the presence and acoustic behaviour of cetaceans, we deployed a high-frequency acoustic recording package on the summit of Cross Seamount during April through October 2005. The most frequently detected cetacean vocalizations were echolocation sounds similar to those produced by ziphiid and mesoplodont beaked whales together with buzz-type signals consistent with prey-capture attempts. Beaked whale signals occurred almost entirely at night throughout the six-month deployment. Measurements of prey presence with a Simrad EK-60 fisheries acoustics echo sounder indicate that Cross Seamount may enhance local productivity in near-surface waters. Concentrations of micronekton were aggregated over the seamount in near-surface waters at night, and dense concentrations of nekton were detected across the surface of the summit. Our results suggest that seamounts may provide enhanced foraging opportunities for beaked whales during the night through a combination of increased productivity, vertical migrations by micronekton and local retention of prey. Furthermore, the summit of the seamount may act as a barrier against which whales concentrate prey.

Jones, JM, Thayre BJ, Roth EH, Mahoney M, Sia I, Merculief K, Jackson C, Zeller C, Clare M, Bacon A, Weaver S, Gentes Z, Small RJ, Stirling I, Wiggins SM, Hildebrand JA.  2014.  Ringed, bearded, and ribbon seal vocalizations north of Barrow, Alaska: Seasonal presence and relationship with sea ice. Arctic. 67:203-222. AbstractWebsite

The acoustic repertoires of ringed, bearded, and ribbon seals are described, along with their seasonal occurrence and relationship to sea ice concentration. Acoustic recordings were made between September and June over three years (2006-09) along the continental slope break in the Chukchi Sea, 120 km north-northwest of Barrow, Alaska. Vocalizations of ringed and bearded seals occurred in winter and during periods of 80%-100% ice cover but were mostly absent during open water periods. The presence of ringed and bearded seal calls throughout winter and spring suggests that some portion of their population is overwintering. Analysis of the repertoire of ringed and bearded seal calls shows seasonal variation. Ringed seal calls are primarily barks in winter and yelps in spring, while bearded seal moans increase during spring. Ribbon seal calls were detected only in the fall of 2008 during the open water period. The repertoire of known ribbon seal vocalizations was expanded to include three additional calls, and two stereotyped call sequences were common. Retrospective analyses of ringed seal recordings from 1982 and ribbon seal recordings from 1967 showed a high degree of stability in call repertoire across large spatial and temporal scales.

Keen, KA, Thayre BJ, Hildebrand JA, Wiggins SM.  2018.  Seismic airgun sound propagation in Arctic Ocean waveguides. Deep-Sea Research Part I-Oceanographic Research Papers. 141:24-32.   10.1016/j.dsr.2018.09.003   AbstractWebsite

Underwater recordings of seismic airgun surveys in the deep-water Beaufort Sea and on the shallow-water Chukchi Sea shelf were made from sites on the continental slope and shelf break north-northwest of Point Barrow, Alaska. Airgun pulses from the deep-water survey were recorded more than 500 km away, and from the shallow-water survey up to similar to 100 km. In the deep-water, received sound pressure levels show spherical spreading propagation; whereas, sound exposure levels exhibit cylindrical spreading propagation. Over the shallow-water shelf, transmission losses were much greater than spherical spreading, due to energy loss in the seafloor. Understanding how sound propagates across large spatial scales in the Arctic Ocean is important for better management and mitigation of anthropogenic noise pollution in marine soundscapes, especially as diminished ice in the Arctic Ocean allows for longer range sound propagation.