Publications

Export 2 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M N O [P] Q R S T U V W X Y Z   [Show ALL]
P
Munger, LM, Mellinger DK, Wiggins SM, Moore SE, Hildebrand JA.  2005.  Performance of spectrogram cross-correlation in detecting right whale calls in long-term recordings from the Bering Sea. Canadian Acoustics. 33:25-34. AbstractWebsite

We investigated the performance of spectrogram cross-correlation for automatically detecting North Pacific right whale (Eubalaena japonica) calls in long-term acoustic recordings from the southeastern Bering Sea. Data were sampled by autonomous, bottom-mounted hydrophones deployed in the southeastern Bering Sea from October 2000 through August 2002. A human analyst detected right whale calls within the first month (October 2000) of recorded data by visually examining spectrograms and by listening to recorded data; these manual detections were then compared to results of automated detection trials. Automated detection by spectrogram cross-correlation was implemented using a synthetic kernel based on the most common right whale call type. To optimize automated detection parameters, the analyst performed multiple trials on minutes-long and hour-long recordings and manually adjusted detection parameters between trials. A single set of optimized detection parameters was used to process a week-long recording from October 2000. The automated detector trials resulted in increasing proportions of false and missed detections with increasing data set duration, due to the higher proportion of acoustic noise and lower overall call rates in longer recordings. However, the automated detector missed only one calling "bout" (2 or more calls within a 10-minute span) of the 18 bouts present in the week-long recording. Despite the high number of false detections and missed individual calls, spectrogram cross-correlation was useful to guide a human analyst to sections of data with potential right whale calling bouts. Upon reviewing automatic detection events, the analyst could quickly dismiss false detections and search recordings before and after correct detections to find missed calls, thus improving the efficiency of searching for a small number of calls in long-term (months- to years-long) recordings.

Hildebrand, JA, Baumann-Pickering S, Frasier KE, Trickey JS, Merkens KP, Wiggins SM, McDonald MA, Garrison LP, Harris D, Marques TA, Thomas L.  2015.  Passive acoustic monitoring of beaked whale densities in the Gulf of Mexico. Scientific Reports. 5:16343.: Macmillan Publishers Limited   10.1038/srep16343   Abstract

Beaked whales are deep diving elusive animals, difficult to census with conventional visual surveys. Methods are presented for the density estimation of beaked whales, using passive acoustic monitoring data collected at sites in the Gulf of Mexico (GOM) from the period during and following the Deepwater Horizon oil spill (2010–2013). Beaked whale species detected include: Gervais’ (Mesoplodon europaeus), Cuvier’s (Ziphius cavirostris), Blainville’s (Mesoplodon densirostris) and an unknown species of Mesoplodon sp. (designated as Beaked Whale Gulf — BWG). For Gervais’ and Cuvier’s beaked whales, we estimated weekly animal density using two methods, one based on the number of echolocation clicks, and another based on the detection of animal groups during 5 min time-bins. Density estimates derived from these two methods were in good general agreement. At two sites in the western GOM, Gervais’ beaked whales were present throughout the monitoring period, but Cuvier’s beaked whales were present only seasonally, with periods of low density during the summer and higher density in the winter. At an eastern GOM site, both Gervais’ and Cuvier’s beaked whales had a high density throughout the monitoring period.