Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Gassmann, M, Wiggins SM, Hildebrand JA.  2015.  Three-dimensional tracking of Cuvier's beaked whales' echolocation sounds using nested hydrophone arrays. Journal of the Acoustical Society of America. 138:2483-2494.   10.1121/1.4927417   AbstractWebsite

Cuvier's beaked whales (Ziphius cavirostris) were tracked using two volumetric small-aperture (similar to 1 m element spacing) hydrophone arrays, embedded into a large-aperture (similar to 1 km element spacing) seafloor hydrophone array of five nodes. This array design can reduce the minimum number of nodes that are needed to record the arrival of a strongly directional echolocation sound from 5 to 2, while providing enough time-differences of arrivals for a three-dimensional localization without depending on any additional information such as multipath arrivals. To illustrate the capabilities of this technique, six encounters of up to three Cuvier's beaked whales were tracked over a two-month recording period within an area of 20 km(2) in the Southern California Bight. Encounter periods ranged from 11 min to 33 min. Cuvier's beaked whales were found to reduce the time interval between echolocation clicks while alternating between two inter-click-interval regimes during their descent towards the seafloor. Maximum peak-to-peak source levels of 179 and 224 dB re 1 mu Pa @ 1 m were estimated for buzz sounds and on-axis echolocation clicks (directivity index = 30 dB), respectively. Source energy spectra of the on-axis clicks show significant frequency components between 70 and 90 kHz, in addition to their typically noted FM upsweep at 40-60 kHz. (C) 2015 Acoustical Society of America.

2013
Gassmann, M, Henderson EE, Wiggins SM, Roch MA, Hildebrand JA.  2013.  Offshore killer whale tracking using multiple hydrophone arrays. Journal of the Acoustical Society of America. 134:3513-3521.   10.1121/1.4824162   AbstractWebsite

To study delphinid near surface movements and behavior, two L-shaped hydrophone arrays and one vertical hydrophone line array were deployed at shallow depths (<125 m) from the floating instrument platform R/P FLIP, moored northwest of San Clemente Island in the Southern California Bight. A three-dimensional propagation-model based passive acoustic tracking method was developed and used to track a group of five offshore killer whales (Orcinus orca) using their emitted clicks. In addition, killer whale pulsed calls and high-frequency modulated (HFM) signals were localized using other standard techniques. Based on these tracks sound source levels for the killer whales were estimated. The peak to peak source levels for echolocation clicks vary between 170-205 dB re 1 mu Pa @ 1 m, for HFM calls between 185-193 dB re 1 mu Pa @ 1 m, and for pulsed calls between 146-158 dB re 1 mu Pa @ 1 m. (C) 2013 Acoustical Society of America.

2012
Wiggins, SM, McDonald MA, Hildebrand JA.  2012.  Beaked whale and dolphin tracking using a multichannel autonomous acoustic recorder. The Journal of the Acoustical Society of America. 131:156-163.   10.1121/1.3662076   AbstractWebsite

To track highly directional echolocation clicks from odontocetes, passive hydrophone arrays with small apertures can be used to receive the same high frequency click on each sensor. A four-hydrophone small-aperture array was coupled to an autonomous acoustic recorder and used for long-term tracking of high-frequency odontocete sounds. The instrument was deployed in the spring of 2009 offshore of southern California in a known beaked whale and dolphin habitat at about 1000 m depth. The array was configured as a tetrahedron with approximately 0.5 m sensor spacing. Time difference of arrival measurements between the six sensor-pairs were used to estimate three-dimensional bearings to sources. Both near-seafloor beaked whales and near-sea surface dolphins were tracked. The tracks observed using this technique provide swimming and diving behavioral information for free-ranging animals using a single instrument. Furthermore, animal detection ranges were derived, allowing for estimation of detection probability functions. (C) 2012 Acoustical Society of America. [DOI: 10.1121/1.3662076]

2007
Sirovic, A, Hildebrand JA, Wiggins SM.  2007.  Blue and fin whale call source levels and propagation range in the Southern Ocean. Journal of the Acoustical Society of America. 122:1208-15.   10.1121/1.2749452   AbstractWebsite

Blue (Balaenoptera musculus) and fin whales (B. physalus) produce high-intensity, low-frequency calls, which probably function for communication during mating and feeding. The source levels of blue and fin whale calls off the Western Antarctic Peninsula were calculated using recordings made with calibrated, bottom-moored hydrophones. Blue whales were located up to a range of 200 km using hyperbolic localization and time difference of arrival. The distance to fin whales, estimated using multipath arrivals of their calls, was up to 56 km. The error in range measurements was 3.8 km using hyperbolic localization, and 3.4 km using multipath arrivals. Both species produced high-intensity calls; the average blue whale call source level was 189+/-3 dB re:1 microPa-1 m over 25-29 Hz, and the average fin whale call source level was 189+/-4 dB re:1 microPa-1 m over 15-28 Hz. Blue and fin whale populations in the Southern Ocean have remained at low numbers for decades since they became protected; using source level and detection range from passive acoustic recordings can help in calculating the relative density of calling whales.