Ocean warming: From the surface to the deep in observations and models

Citation:
Durack, PJ, Gleckler PJ, Purkey SG, Johnson GC, Lyman JM, Boyer TP.  2018.  Ocean warming: From the surface to the deep in observations and models. Oceanography. 31:41-51.

Date Published:

2018/06

Keywords:

ARGO, climate-change, CMIP5, design, drift, era, floats, heat-content changes, Oceanography, polar amplification, profiling, temperature

Abstract:

The ocean is the primary heat sink of the global climate system. Since 1971, it has been responsible for storing more than 90% of the excess heat added to the Earth system by anthropogenic greenhouse-gas emissions. Adding this heat to the ocean contributes substantially to sea level rise and affects vital marine ecosystems. Considering the global ocean's large role in ongoing climate variability and change, it is a good place to focus in order to understand what observed changes have occurred to date and, by using models, what future changes might arise under continued anthropogenic forcing of the climate system. While sparse measurement coverage leads to enhanced uncertainties with long-term historical estimates of change, modern measurements are beginning to provide the clearest picture yet of ongoing global ocean change. Observations show that the ocean is warming from the near-surface through to the abyss, a conclusion that is strengthened with each new analysis. In this assessment, we revisit observation- and model-based estimates of ocean warming from the industrial era to the present and show a consistent, full-depth pattern of change over the observed record that is likely to continue at an ever-increasing pace if effective actions to reduce greenhouse-gas emissions are not taken.

Notes:

n/a

Website

DOI:

10.5670/oceanog.2018.227