Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Constable, S, Kowalczyk P, Bloomer S.  2018.  Measuring marine self-potential using an autonomous underwater vehicle. Geophysical Journal International. 215:49-60.   10.1093/gji/ggy263   AbstractWebsite

The marine self-potential (SP) method is used to explore for hydrothermal venting and associated seafloor mineralization. Measurements are commonly made in deep water using instruments towed close to the seafloor, which requires dedicated ship time, is limited to slow speeds, and is subject to navigation errors. Instead, we mounted a three-axis electric field receiver on an autonomous underwater vehicle (AUV), and tested the method with data collected in the Iheya area of the Okinawa Trough, off Japan. Parts of this prospect have documented hydrothermal venting and seafloor massive sulfide (SMS) deposits. An International Submarine Engineering Limited explorer-class AUV was fitted with a controlled-source electromagnetic (CSEM) amplifier and logging system, modified to collect DC SP data using silver chloride electrodes on approximately 1 m dipoles. A 1 km x 1 km area was surveyed with a flight pattern of six lines, collected three times to assess repeatability and noise levels. The entire data set was collected in a single day on station with a 10 hr AUV deployment. Flying height was 70 m, navigation errors were less than 3 m, collection speed was 1.1 m s(-1) and electric field noise levels were less than 5 mu V m(-1). Localized anomalies of 0.3 mV m(-1) were observed, from which potentials were estimated using regularized inversion, yielding negative SP anomalies of 15-25 mV. Modelling electric field data as dipoles shows that the negative poles causing the anomalies are localized near the seafloor with a diffuse return current deeper than 1000 m below seafloor. Apparent conductivities as high as 30 S m(-1) were derived from CSEM data collected during the same deployment, which strongly suggests that SMS mineralization is associated with one of the SP anomalies, although the localization near the seafloor and the lack of a dipolar signal suggest that the causative mechanism for the SP anomalies is due to hydrothermal venting. In either case, we have demonstrated that AUV-mounted instrument systems are an efficient, effective and low noise means of collecting marine SP data.

Constable, S.  2013.  Review paper: Instrumentation for marine magnetotelluric and controlled source electromagnetic sounding. Geophysical Prospecting. 61:505-532.   10.1111/j.1365-2478.2012.01117.x   AbstractWebsite

We review and describe the electromagnetic transmitters and receivers used to carry out magnetotelluric and controlled source soundings in the marine environment. Academic studies using marine electromagnetic methods started in the 1970s but during the last decade these methods have been used extensively by the offshore hydrocarbon exploration industry. The principal sensors (magnetometers and non-polarizing electrodes) are similar to those used on land but magnetotelluric field strengths are not only much smaller on the deep sea-floor but also fall off more rapidly with increasing frequency. As a result, magnetotelluric signals approach the noise floor of electric field and induction coil sensors (0.1 nV/m and 0.1 pT) at around 1 Hz in typical continental shelf environments. Fluxgate magnetometers have higher noise than induction coils at periods shorter than 500 s but can still be used to collect sea-floor magnetotelluric data down to 40-100 s. Controlled source transmitters using electric dipoles can be towed continuously through the seawater or on the sea-bed, achieving output currents of 1000 A or more, limited by the conductivity of seawater and the power that can be transmitted down the cables used to tow the devices behind a ship. The maximum source-receiver separation achieved in controlled source soundings depends on both the transmitter dipole moment and on the receiver noise floor and is typically around 10 km in continental shelf exploration environments. The position of both receivers and transmitters needs to be navigated using either long baseline or short baseline acoustic ranging, while sea-floor receivers need additional measurements of orientations from compasses and tiltmeters. All equipment has to be packaged to accommodate the high pressure (up to 40 MPa) and corrosive properties of seawater. Usually receiver instruments are self-contained, battery powered and have highly accurate clocks for timekeeping, even when towed on the sea-floor or in the water column behind a transmitter.

Heinson, G, Constable S.  1992.  The Electrical-Conductivity of the Oceanic Upper Mantle. Geophysical Journal International. 110:159-179.   10.1111/j.1365-246X.1992.tb00719.x   AbstractWebsite

Previous inversions of sea-floor magnetotelluric (MT) sounding data have predicted upper mantle electrical conductivities which are more than an order of magnitude higher than laboratory measurements of the conductivity of olivine would suggest, and controlled source-field electromagnetic (CSEM) soundings require a lithospheric mantle conductivity of 3 x 10(-5) Sm-1, which is so low that the electromagnetic (EM) coast effect would produce more anisotropy in MT soundings than is observed. We address these issues by constructing an olivine mantle model for conductivity and examining the inversion of MT data from three sea-floor sites, and show that the incompatibilities can be largely resolved if the effects of oceans and coastlines are considered. Our mantle model is based on recent measurements of olivine conductivity, the conductivity of tholeiite melt, a thermal model for the upper mantle based on lithospheric cooling and the temperature of alpha --> alpha + beta olivine transition, the pyrolite model of mantle petrology, and conductivities derived from CSEM sounding. We propose Archie's Law with exponent 2 and interconnected tubes as realistic lower and upper bounds for the effect of partial melt on rock conductivity, and Archie's Law with exponent 1.5 as the preferred estimate. The 1-D forward response of this model is not compatible with observed sea-floor MT data. Three data sets presented by Oldenburg (1981) pass a test for one-dimensionality based on the size of the residuals when fit with Parker's D+ algorithm, but two of the three soundings fail a test for independence of residuals. We also find that the presence of the upper mantle 'high-conductivity zone' previously inferred from these data is highly dependent on data misfit and not required when the misfit criterion is relaxed a reasonable amount. Re-inversions of the MT data produce models which are incompatible with our petrological model of mantle conductivity. However, by adding an ocean with various coastlines of simple geometry to our petrological model and solving the forward 3-D problem using thin-sheet analysis we predict MT responses which are distorted in a manner that is remarkably similar to the observed data.