Export 2 results:
Sort by: Author Title Type [ Year  (Asc)]
Sherman, D, Constable SC.  2018.  Permafrost extent on the Alaskan Beaufort shelf from surface-towed controlled-source electromagnetic surveys. Journal of Geophysical Research-Solid Earth. 123:7253-7265.   10.1029/2018jb015859   AbstractWebsite

We have developed a surface-towed electric dipole-dipole system capable of operating in shallow water and deployable from small vessels. Our system uses electromagnetic energy from a modulated manmade source to interrogate the underlying resistivity structure of the seafloor. We used this system in the summers of 2014 and 2015 to map subsea ice-bearing permafrost on the Beaufort shelf along 200km of coastline, from Tigvariak Island to Harrison Bay. Permafrost is resistive and was found to be anisotropic, likely due to interbedded layers of frozen and unfrozen sediment. Maps of depth to permafrost and its thickness were produced from electrical resistivity inversions and results compared to borehole logs in the area. We observed elevated resistivity values offshore the Sagavanirktok River outflow, supporting the idea that fresh groundwater flow has a preserving effect on submerged permafrost. This system provides a cost effective method that could be used to further quantify permafrost extent, provide a baseline for measurements of future degradation, and provide observational constraints to aid in permafrost modeling studies.

Constable, S, Kowalczyk P, Bloomer S.  2018.  Measuring marine self-potential using an autonomous underwater vehicle. Geophysical Journal International. 215:49-60.   10.1093/gji/ggy263   AbstractWebsite

The marine self-potential (SP) method is used to explore for hydrothermal venting and associated seafloor mineralization. Measurements are commonly made in deep water using instruments towed close to the seafloor, which requires dedicated ship time, is limited to slow speeds, and is subject to navigation errors. Instead, we mounted a three-axis electric field receiver on an autonomous underwater vehicle (AUV), and tested the method with data collected in the Iheya area of the Okinawa Trough, off Japan. Parts of this prospect have documented hydrothermal venting and seafloor massive sulfide (SMS) deposits. An International Submarine Engineering Limited explorer-class AUV was fitted with a controlled-source electromagnetic (CSEM) amplifier and logging system, modified to collect DC SP data using silver chloride electrodes on approximately 1 m dipoles. A 1 km x 1 km area was surveyed with a flight pattern of six lines, collected three times to assess repeatability and noise levels. The entire data set was collected in a single day on station with a 10 hr AUV deployment. Flying height was 70 m, navigation errors were less than 3 m, collection speed was 1.1 m s(-1) and electric field noise levels were less than 5 mu V m(-1). Localized anomalies of 0.3 mV m(-1) were observed, from which potentials were estimated using regularized inversion, yielding negative SP anomalies of 15-25 mV. Modelling electric field data as dipoles shows that the negative poles causing the anomalies are localized near the seafloor with a diffuse return current deeper than 1000 m below seafloor. Apparent conductivities as high as 30 S m(-1) were derived from CSEM data collected during the same deployment, which strongly suggests that SMS mineralization is associated with one of the SP anomalies, although the localization near the seafloor and the lack of a dipolar signal suggest that the causative mechanism for the SP anomalies is due to hydrothermal venting. In either case, we have demonstrated that AUV-mounted instrument systems are an efficient, effective and low noise means of collecting marine SP data.