Measuring marine self-potential using an autonomous underwater vehicle

Constable, S, Kowalczyk P, Bloomer S.  2018.  Measuring marine self-potential using an autonomous underwater vehicle. Geophysical Journal International. 215:49-60.

Date Published:



algorithm, electromagnetic, field, Geochemistry & Geophysics, hydrothermal systems, massive sulfides, methods, mid-atlantic ridge, mineralization, sea, Submarine tectonics and volcanism, tag hydrothermal mound


The marine self-potential (SP) method is used to explore for hydrothermal venting and associated seafloor mineralization. Measurements are commonly made in deep water using instruments towed close to the seafloor, which requires dedicated ship time, is limited to slow speeds, and is subject to navigation errors. Instead, we mounted a three-axis electric field receiver on an autonomous underwater vehicle (AUV), and tested the method with data collected in the Iheya area of the Okinawa Trough, off Japan. Parts of this prospect have documented hydrothermal venting and seafloor massive sulfide (SMS) deposits. An International Submarine Engineering Limited explorer-class AUV was fitted with a controlled-source electromagnetic (CSEM) amplifier and logging system, modified to collect DC SP data using silver chloride electrodes on approximately 1 m dipoles. A 1 km x 1 km area was surveyed with a flight pattern of six lines, collected three times to assess repeatability and noise levels. The entire data set was collected in a single day on station with a 10 hr AUV deployment. Flying height was 70 m, navigation errors were less than 3 m, collection speed was 1.1 m s(-1) and electric field noise levels were less than 5 mu V m(-1). Localized anomalies of 0.3 mV m(-1) were observed, from which potentials were estimated using regularized inversion, yielding negative SP anomalies of 15-25 mV. Modelling electric field data as dipoles shows that the negative poles causing the anomalies are localized near the seafloor with a diffuse return current deeper than 1000 m below seafloor. Apparent conductivities as high as 30 S m(-1) were derived from CSEM data collected during the same deployment, which strongly suggests that SMS mineralization is associated with one of the SP anomalies, although the localization near the seafloor and the lack of a dipolar signal suggest that the causative mechanism for the SP anomalies is due to hydrothermal venting. In either case, we have demonstrated that AUV-mounted instrument systems are an efficient, effective and low noise means of collecting marine SP data.