Export 90 results:
Sort by: Author Title Type [ Year  (Desc)]
Zhou, XF, Fenical W.  2016.  The unique chemistry and biology of the piericidins. Journal of Antibiotics. 69:582-593.   10.1038/ja.2016.7   AbstractWebsite

The piericidin family of microbial metabolites features a 4-pyridinol core linked with a methylated polyketide side chain. Piericidins are exclusively produced by actinomycetes, especially members of the genus Streptomyces. The close structural similarity with coenzyme Q renders the piericidins important NADH-ubiquinone oxidoreductase (complex I) inhibitors in the mitochondria! electron transport chain. Because of the significant activities of the piericidins, which include insecticidal, antimicrobial and antitumor effects, total syntheses of the piericidins were developed using various synthetic strategies. The biosynthetic origin of this class has also been the subject of investigation. This review covers the isolation and structure determination of the natural piericidins, their chemical modification, the total syntheses of natural and unnatural analogs, their biosynthesis, and reported biological activities together with structure-activity relationships. Given the fundamental biology of this class of metabolites, the piericidin family will likely continue to attract attention as biological probes of important biosynthetic processes.

Cande, SC, Patriat P.  2015.  The anticorrelated velocities of Africa and India in the Late Cretaceous and early Cenozoic. Geophysical Journal International. 200:227-243.   10.1093/gji/ggu392   AbstractWebsite

We present a revised interpretation of magnetic anomalies and fracture zones on the Southwest Indian Ridge (SWIR; Africa-Antarctica) and the Southeast Indian Ridge (SEIR; Capricorn-Antarctica) and use them to calculate 2-plate finite rotations for anomalies 34 to 20 (84 to 43 Ma). Central Indian Ridge (CIR; Capricorn-Africa) rotations are calculated by summing the SWIR and SEIR rotations. These rotations provide a high-resolution record of changes in the motion of India and Africa at the time of the onset of the Reunion plume head. An analysis of the relative velocities of India, Africa and Antarctica leads to a refinement of previous observations that the speedup of India relative to the mantle was accompanied by a slowdown of Africa. The most rapid slowdown of Africa occurs around Chron 32Ay (71 Ma), the time when India's motion relative to Africa notably starts to accelerate. Using the most recent Geomagnetic Polarity Timescale (GTS12) we show that India's velocity relative to Africa was characterized by an acceleration from roughly 60 to 180 mm yr(-1) between 71 and 66 Ma, a short pulse of superfast motion (similar to 180 mm yr(-1)) between 66 and 63 Ma, an abrupt slowdown to 120 mm yr(-1) between 63 and 62 Ma, and then a long period (63 to 47 Ma) of gradual slowing, but still fast motion (similar to 100 mm yr(-1)), which ends with a rapid slowdown after Chron 21o (47 Ma). Changes in the velocities of Africa and India with respect to the mantle follow a similar pattern. The fastest motion of India relative to the mantle, similar to 220 mm yr(-1), occurs during Chron 29R. The SWIR rotations constrain three significant changes in the migration path of the Africa-Antarctic stage poles: following Chron 33y (73 Ma), following Chron 31y (68 Ma), and following Chron 24o (54 Ma). The change in the migration path of the SWIR stage poles following Chron 33y is coincident with the most rapid slowdown in Africa's motion. The change in the migration path after Chron 31y, although coincident with the most rapid acceleration of India's northward motion, may be related to changes in ridge push forces on the SWIR associated with the onset of extension along the Bain transform fault zone. The initial slowdown in India's motion relative to Africa between 63 and 62 Ma is more abrupt than predictions based on published plume head force models, suggesting it might have been caused by a change in plate boundary forces. The abrupt change in the migration path of the SWIR stage poles after Chron 24o is not associated with major changes in the velocities of either Africa or India and may reflect Atlantic basin plate motion changes associated with the arrival at the Earth's surface of the Iceland plume head. The abruptness of India's slowdown after Chron 21o is consistent with a collision event.

Selvans, MM, Stock JM, Clayton RW, Cande S, Granot R.  2014.  Deep crustal structure of the Adare and Northern Basins, Ross Sea, Antarctica, from sonobuoy data. Earth and Planetary Science Letters. 405:220-230.   10.1016/j.epsl.2014.08.029   AbstractWebsite

Extension associated with ultraslow seafloor spreading within the Adare Basin, in oceanic crust just north of the continental shelf in the Ross Sea, Antarctica, extended south into the Northern Basin. Magnetic and gravity anomaly data suggest continuity of crustal structure across the continental shelf break that separates the Adare and Northern Basins. We use sonobuoy refraction data and multi-channel seismic (MCS) reflection data collected during research cruise NBP0701, including 71 new sonobuoy records, to provide constraints on crustal structure in the Adare and Northern Basins. Adjacent 1D sonobuoy profiles along several MCS lines reveal deep crustal structure in the vicinity of the continental shelf break, and agree with additional sonobuoy data that document fast crustal velocities (6000-8000 m/s) at shallow depths (1-6 km below sea level) from the Adare Basin to the continental shelf, a structure consistent with that of other ultraslow-spread crust. Our determination of crustal structure in the Northern Basin only extends through sedimentary rock to the basement rock, and so cannot help to distinguish between different hypotheses for formation of the basin. (C) 2014 Elsevier B.V. All rights reserved.

Seton, M, Whittaker JM, Wessel P, Muller RD, DeMets C, Merkouriev S, Cande S, Gaina C, Eagles G, Granot R, Stock J, Wright N, Williams SE.  2014.  Community infrastructure and repository for marine magnetic identifications. Geochemistry Geophysics Geosystems. 15:1629-1641.   10.1002/2013gc005176   AbstractWebsite

Magnetic anomaly identifications underpin plate tectonic reconstructions and form the primary data set from which the age of the oceanic lithosphere and seafloor spreading regimes in the ocean basins can be determined. Although these identifications are an invaluable resource, their usefulness to the wider scientific community has been limited due to the lack of a central community infrastructure to organize, host, and update these interpretations. We have developed an open-source, community-driven online infrastructure as a repository for quality-checked magnetic anomaly identifications from all ocean basins. We provide a global sample data set that comprises 96,733 individually picked magnetic anomaly identifications organized by ocean basin and publication reference, and provide accompanying Hellinger-format files, where available. Our infrastructure is designed to facilitate research in plate tectonic reconstructions or research that relies on an assessment of plate reconstructions, for both experts and nonexperts alike. To further enhance the existing repository and strengthen its value, we encourage others in the community to contribute to this effort.

Granot, R, Cande SC, Stock JM, Damaske D.  2013.  Revised Eocene-Oligocene kinematics for the West Antarctic rift system. Geophysical Research Letters. 40:279-284.   10.1029/2012gl054181   AbstractWebsite

Past plate motion between East and West Antarctica along the West Antarctic rift system had important regional and global implications. Although extensively studied, the kinematics of the rift during Eocene-Oligocene time still remains elusive. Based on a recent detailed aeromagnetic survey from the Adare and Northern Basins, located in the northwestern Ross Sea, we present the first well-constrained kinematic model with four rotations for Anomalies 12o, 13o, 16y, and 18o (26.5-40.13 Ma). These rotation poles form a cluster suggesting a stable sense of motion during that period of time. The poles are located close to the central part of the rift implying that the local motion varied from extension in the western Ross Sea sector (Adare Basin, Northern Basin, and Victoria Land Basin) to dextral transcurrent motion in the Ross Ice Shelf and to oblique convergence in the eastern end of the rift zone. The results confirm previous estimates of 95 km of extension in the Victoria Land Basin. Citation: Granot, R., S. C. Cande, J. M. Stock, and D. Damaske (2013), Revised Eocene-Oligocene kinematics for the West Antarctic rift system, Geophys. Res. Lett., 40, 279-284, doi:10.1029/2012GL054181.

Cande, SC, Stegman DR.  2011.  Indian and African plate motions driven by the push force of the Reunion plume head. Nature. 475:47-52.   10.1038/nature10174   AbstractWebsite

Mantle plumes are thought to play an important part in the Earth's tectonics, yet it has been difficult to isolate the effect that plumes have on plate motions. Here we analyse the plate motions involved in two apparently disparate events-the unusually rapid motion of India between 67 and 52 million years ago and a contemporaneous, transitory slowing of Africa's motion-and show that the events are coupled, with the common element being the position of the Indian and African plates relative to the location of the Reunion plume head. The synchroneity of these events suggests that they were both driven by the force of the Reunion plume head. The recognition of this plume force has substantial tectonic implications: the speed-up and slowdown of India, the possible cessation of convergence between Africa and Eurasia in the Palaeocene epoch and the enigmatic bends of the fracture zones on the Southwest Indian Ridge can all be attributed to the Reunion plume.

Cande, SC, Patriat P, Dyment J.  2010.  Motion between the Indian, Antarctic and African plates in the early Cenozoic. Geophysical Journal International. 183:127-149.   10.1111/j.1365-246X.2010.04737.x   AbstractWebsite

P>We used a three-plate best-fit algorithm to calculate four sets of Euler rotations for motion between the India (Capricorn), Africa (Somali) and Antarctic plates for 14 time intervals in the early Cenozoic. Each set of rotations had a different combination of data constraints. The first set of rotations used a basic set of magnetic anomaly picks on the Central Indian Ridge (CIR), Southeast Indian Ridge (SEIR) and Southwest Indian Ridge (SWIR) and fracture zone constraints on the CIR and SEIR, but did not incorporate data from the Carlsberg Ridge and did not use fracture zones on the SWIR. The second set added fracture zone constraints from the region of the Bain fracture zone on the SWIR which were dated with synthetic flowlines based on the first data set. The third set of rotations used the basic constraints from the first rotation set and added data from the Carlsberg Ridge. The fourth set of rotations combined both the SWIR fracture zone constraints and the Carlsberg Ridge constraints. Data on the Indian Plate side of the Carlsberg Ridge (Arabian Basin) were rotated to the Capricorn Plate before being included in the constraints. Plate trajectories and spreading rate histories for the CIR and SWIR based on the new rotations document the major early Cenozoic changes in plate motion. On the CIR and SEIR there was a large but gradual slowdown starting around Chron 23o (51.9 Ma) and continuing until Chron 21y (45.3 Ma) followed 2 or 3 Myr later by an abrupt change in spreading azimuth which started around Chron 20o (42.8) Ma and which was completed by Chron 20y (41.5 Ma). No change in spreading rate accompanied the abrupt change in spreading direction. On the SWIR there was a continuous increase in spreading rates between Chrons 23o and 20o and large changes in azimuth around Chrons 24 and 23 and again at Chron 21. Unexpectedly, we found that the two sets of rotations constrained by the Carlsberg Ridge data diverged from the other two sets of rotations prior to anomaly 22o. When compared to rotations for the CIR that are simultaneously constrained by data from all three branches of the Indian Ocean Triple Junction, there is a progressively larger separation of anomalies on the Carlsberg Ridge, with a roughly 25 km misfit for anomaly 23o and increasing to over 100 km for anomaly 26y. These data require that there was previously unrecognized convergence somewhere in the plate circuit linking the Indian, Capricorn and Somali plates prior to Chron 22o. We quantify this motion by summing our new Capricorn-Somalia rotations with previously published rotations for Neogene India-Capricorn motion and for early Cenozoic Somali-India motion based solely on Carlsberg Ridge data. The most likely possibility is that there was motion within the Somalia Plate due to a distinct Seychelles microplate as young as Chron 22o. The sense of the misfit on the Carlsberg Ridge is consistent with roughly 100-150 km of convergence across a boundary passing through the Amirante Trench and extending north to the Carlsberg Ridge axis between anomalies 26y and 22o. Alternatively, there may have been convergence within the Indian Plate, either along the western margin of Indian or east of the CIR in the region of the current Capricorn-Indian diffuse plate boundary. Our work sharpens the dating of the two major Eocene changes in plate motion recognized in the Indian Ocean.

Croon, MB, Cande SC, Stock JM.  2010.  Abyssal hill deflections at Pacific-Antarctic ridge-transform intersections. Geochemistry Geophysics Geosystems. 11   10.1029/2010gc003236   AbstractWebsite

Nearly complete coverage of shipboard multibeam bathymetry data at the right-stepping Menard and Pitman Fracture Zones allowed us to map abyssal hill deviations along their traces. In this study we distinguish between (1) J-shaped curvatures at their origin, where modeling is addressing primary volcanism and faulting following a curved zone, and (2) straight abyssal hills getting bent in anti-J-shaped curvatures, in response to increased coupling across the transform fault, after they were formed. We compared the mapped abyssal hill deflections to a detailed plate motion model for the Pacific-Antarctic Ridge to test how abyssal hill curvature correlates to changes in plate motion direction, which lead to periods of transtension or transpression. This test was based on the number and size of the abyssal hill deflections. The observations show a high abundance of J-shaped abyssal hills during periods of significant clockwise change in plate motion direction, which leads to transtension. The tip of the ridge axis can deflect up to 60 into the transform fault in response to changes in the stress field at ridge-transform intersections. This is observed, in particular, at the Pitman Fracture Zone, where there has been a similar to 15 degrees clockwise rotation of the spreading direction azimuth during the last 9 Myr. In addition, we observed anti-J-shaped curvatures at Menard, Pitman, and Heirtzler Fracture Zones during periods of transpression when increased coupling across an oceanic transform fault is partially accommodated by distributed strike-slip deformation rather than solely by discontinuous displacement at the transform fault. Anti-J-shaped deflections typically develop in seafloor less than 2 Myr old when the oceanic lithosphere is thin.

Granot, R, Cande SC, Stock JM, Davey FJ, Clayton RW.  2010.  Postspreading rifting in the Adare Basin, Antarctica: Regional tectonic consequences. Geochemistry Geophysics Geosystems. 11   10.1029/2010gc003105   AbstractWebsite

Extension during the middle Cenozoic (43-26 Ma) in the north end of the West Antarctic rift system (WARS) is well constrained by seafloor magnetic anomalies formed at the extinct Adare spreading axis. Kinematic solutions for this time interval suggest a southward decrease in relative motion between East and West Antarctica. Here we present multichannel seismic reflection and seafloor mapping data acquired within and near the Adare Basin on a recent geophysical cruise. We have traced the ANTOSTRAT seismic stratigraphic framework from the northwest Ross Sea into the Adare Basin, verified and tied to DSDP drill sites 273 and 274. Our results reveal three distinct periods of tectonic activity. An early localized deformational event took place close to the cessation of seafloor spreading in the Adare Basin (similar to 24 Ma). It reactivated a few normal faults and initiated the formation of the Adare Trough. A prominent pulse of rifting in the early Miocene (similar to 17 Ma) resulted in normal faulting that initiated tilted blocks. The overall trend of structures was NE-SW, linking the event with the activity outside the basin. It resulted in major uplift of the Adare Trough and marks the last extensional phase of the Adare Basin. Recent volcanic vents (Pliocene to present day) tend to align with the early Miocene structures and the on-land Hallett volcanic province. This latest phase of tectonic activity also involves near-vertical normal faulting ( still active in places) with negligible horizontal consequences. The early Miocene extensional event found within the Adare Basin does not require a change in the relative motion between East and West Antarctica. However, the lack of subsequent rifting within the Adare Basin coupled with the formation of the Terror Rift and an on-land and subice extension within the WARS require a pronounced change in the kinematics of the rift. These observations indicate that extension increased southward, therefore suggesting that a major change in relative plate motion took place in the middle Miocene. The late Miocene pole of rotation might have been located north of the Adare Basin, with opposite opening sign compared to the Eocene-Oligocene pole.

Granot, R, Cande SC, Gee JS.  2009.  The implications of long-lived asymmetry of remanent magnetization across the North Pacific fracture zones. Earth and Planetary Science Letters. 288:551-563.   10.1016/j.epsl.2009.10.017   AbstractWebsite

Large marine magnetic anomalies accompany the Pacific fracture zones (FZs) for thousands of kilometers. Although the origin of these anomalies is poorly understood, their underlying magnetization contrasts should reflect the temporal record of crustal accretion as well as geomagnetic field variations. Here we present an analysis of archival and newly collected magnetic anomaly profiles measured across three FZs from the North Pacific Cretaceous Quiet Zone (120.6 to 83 Ma) that are characterized by a remarkably uniform shape. Forward and inverse modeling indicate that these anomalies arise from remanent magnetization, with enhanced remanence located on one side of each FZ along the entire studied area. A comparison of geochemical and magnetic data from active ridge discontinuities and transform faults suggests that elevated iron content near segment ends is likely responsible for the observed anomalies in the Cretaceous Quiet Zone as well. A more complex magnetization setting is observed where the FZs contain multiple faults. There, the simple model of one-sided enhancements is only partly valid. Comparison between 3D forward modeling of the Quiet Zone magnetization and the calculated magnetization contrasts found across the Pioneer and Pau FZs suggests that the intensity of the geomagnetic field during the Cretaceous superchron had less than 50 percent variability about its average value. No major trends in the strength of the geomagnetic field during the superchron are observed. The presence of long-duration (> 30 m.y.) zones of enhanced magnetization along the young/old sides of the Pioneer/Pau FZs (both left-stepping) requires some long-lived asymmetry in crustal construction processes near ridge-transform intersections. Although the underlying mechanism that controls this long-lived asymmetry remains unclear, absolute plate motions might explain this asymmetry. Shorter period (few m.y.) variations in the amplitudes of the enhancements probably result from oscillations in crustal construction. (C) 2009 Elsevier B.V. All rights reserved.

Barckhausen, U, Ranero CR, Cande SC, Engels M, Weinrebe W.  2008.  Birth of an intraoceanic spreading center. Geology. 36:767-770.   10.1130/g25056a.1   AbstractWebsite

The Cocos-Nazca spreading center is one of the few examples of the formation of a spreading center by splitting of oceanic lithosphere. It was created when the Farallon plate broke up in the early Miocene following the collision of the Pacific-Farallon spreading center with the North American continent. Much of the ancient Farallon plate corresponding to the area of opening is lost to subduction beneath Central America and South America, but new data from the conjugate area on the Pacific plate allow the first detailed reconstruction of the break-up process. The opening began after chron 7 (25 Ma) at a location of focused crustal extension caused by overlapping spreading centers that had evolved in response to a slight reorientation of a Pacific-Farallon ridge segment. Beginning at chron 6B (22.7 Ma), eastward progressing seafloor spreading started along an axis that most likely migrated toward the region of weak lithosphere created by the Galapagos hotspot. By chron 6 (19.5 Ma), plate splitting from the spreading center to the trench was complete, allowing the fully detached Cocos and Nazca plates to move independently. This kinematic change resulted in a significant ridge jump of the newly established Pacific-Nazca spreading center, a change in plate motion direction of the Nazea plate by 20 degrees clockwise, and a large increase in Pacific-Cocos plate velocity in the middle Miocene.

Croon, MB, Cande SC, Stock JM.  2008.  Revised Pacific-Antarctic plate motions and geophysics of the Menard Fracture Zone. Geochemistry Geophysics Geosystems. 9   10.1029/2008gc002019   AbstractWebsite

[1] A reconnaissance survey of multibeam bathymetry and magnetic anomaly data of the Menard Fracture Zone allows for significant refinement of plate motion history of the South Pacific over the last 44 million years. The right-stepping Menard Fracture Zone developed at the northern end of the Pacific-Antarctic Ridge within a propagating rift system that generated the Hudson microplate and formed the conjugate Henry and Hudson Troughs as a response to a major plate reorganization similar to 45 million years ago. Two splays, originally about 30 to 35 km apart, narrowed gradually to a corridor of 5 to 10 km width, while lineation azimuths experienced an 8 degrees counterclockwise reorientation owing to changes in spreading direction between chrons C13o and C6C (33 to 24 million years ago). We use the improved Pacific-Antarctic plate motions to analyze the development of the southwest end of the Pacific-Antarctic Ridge. Owing to a 45 degrees counterclockwise reorientation between chrons C27 and C20 (61 to 44 million years ago) this section of the ridge became a long transform fault connected to the Macquarie Triple Junction. Following a clockwise change starting around chron C13o (33 million years ago), the transform fault opened. A counterclockwise change starting around chron C10y (28 millions years ago) again led to a long transform fault between chrons C6C and C5y (24 to 10 million years ago). A second period of clockwise reorientation starting around chron C5y (10 million years ago) put the transform fault into extension, forming an array of 15 en echelon transform faults and short linking spreading centers.

Muller, RD, Gohl K, Cande SC, Goncharov A, Golynsky AV.  2007.  Eocene to Miocene geometry of the West Antarctic Rift System. Australian Journal of Earth Sciences. 54:1033-1045.   10.1080/08120090701615691   AbstractWebsite

Tectonic models for the Late Cretaceous/Tertiary evolution of the West Antarctic Rift System range from hundreds of kilometres of extension to negligible strike-slip displacement and are based on a variety of observations, as well as kinematic and geodynamic models. Most data constraining these models originate from the Ross Sea/Adore Trough area and the Transantarctic Mountains. We use a new Antarctic continental crustal-thinning grid, combined with a revised plate-kinematic model based on East Antarctic-Australia-Pacific-West Antarctic plate circuit closure, to trace the geometry and extensional style of the Eocene-Oligocene West Antarctic Rift from the Ross Sea to the South Shetland Trench. The combined data suggest that from chron 21 (48 Ma) to chron 8 (26 Ma), the West Antarctic Rift System was characterised by extension in the west to dextral strike-slip in the east, where it was connected to the Pacific-Phoenix-East Antarctic triple junction via the Byrd Subglacial Basin and the Bentley Subglacial Trench, interpreted as pullapart basins. Seismic-reflection profiles crossing the De Gerlache Gravity Anomaly, a tectonic scar from a former spreading ridge jump in the Bellingshausen Sea, suggest Late Tertiary reactivation in a dextral strike-slip mode. This is supported by seismic-reflection profiles crossing the De Gerlache Gravity Anomaly in the Bellingshausen Sea, which show incised narrow sediment troughs and vertical faults indicating strike-slip movement along a north-south direction, Using pre-48 Ma plate circuit closure, we test the hypothesis that the Lord Howe Rise was attached to the Pacific Plate during the opening of the Tasman Sea, We show that this plate geometry may be plausible at least between 74 and 48 Ma, but further work especially on Australian-Antarctic relative plate motions is required to test this hypothesis.

Downey, NJ, Stock JM, Clayton RW, Cande SC.  2007.  History of the Cretaceous Osbourn spreading center. Journal of Geophysical Research-Solid Earth. 112   10.1029/2006jb004550   AbstractWebsite

[ 1] The Osbourn Trough is a fossil spreading center that rifted apart the Manihiki and Hikurangi Plateaus during Cretaceous time. Previous models of the Osbourn spreading center are based on data collected near the trough axis, and therefore only constrain the history of the Osbourn spreading center during the last few Ma of spreading. Our data set includes multibeam data collected northward to the Manihiki Plateau, allowing us to examine seafloor morphology created during the entire active period of the Osbourn spreading center, as well as several additional multibeam data sets that provide the opportunity to examine the relationship between the Osbourn paleospreading center and the Cretaceous Pacific-Phoenix ridge. The axial gravity of the trough is similar to the gravity found at other extinct slow-intermediate spreading rate ridges. Magnetic field measurements indicate that spreading at the trough ceased during Chron C34. Abyssal-hill trends indicate that spreading during the early history of the Osbourn spreading center occurred at 15 degrees- 20 degrees. The east-west component of this spreading explains the modern east-west offset of the Manihiki and Hikurangi Plateaus. Spreading rotated to 2 degrees - 5 degrees prior to extinction. Abyssal-hill RMS amplitudes show that a decrease in spreading rate, from > 7 cm/yr to 2 - 6 cm/yr full-spreading rate, occurred similar to 2 - 6 Ma prior to ridge extinction. Our data analysis is unable to determine the exact spreading rate of the Osbourn spreading center prior to the slowing event. The temporal constraints provided by our data show that the Osbourn spreading center ceased spreading prior to 87 Ma or 93 Ma, depending on whether the Manihiki and Hikurangi Plateaus rifted at 115 Ma or 121 Ma. Our model resolves the conflict between regional models of Osbourn spreading with models based on trough characteristics by showing that spreading at the Osbourn spreading center was decoupled from Pacific-Phoenix spreading.

Davey, FJ, Cande SC, Stock JM.  2006.  Extension in the western Ross Sea region-links between Adare Basin and Victoria Land Basin. Geophysical Research Letters. 33   10.1029/2006gl027383   AbstractWebsite

Spreading in the Adare Basin off north-western Ross Sea ( 43 - 26 Ma) and extension in the Victoria Land Basin (VLB, > 36 Ma) are used to constrain the pole of rotation for the Adare Basin, providing a rifting model for the region for the past 45 Ma. The offset from Northern Basin to VLB at about 74 degrees S coincides with the linear Polar-3 magnetic anomaly, inferred to be caused by a major 48-34 Ma igneous intrusion. The style of extension apparently changed at about 34 Ma, with the end of intrusion at the Polar-3 anomaly, a change from highly asymmetric extension in Adare Basin, and the onset of major subsidence on the flanks of VLB. Ductile lower crustal and lithospheric flow is proposed as the cause of the inferred thick crust underlying southern Adare Basin, and a result of the constraining of extension to the adjacent contiguous Northern Basin.

Muller, RD, Cande SC, Stock JM, Keller WR.  2005.  Crustal structure and rift flank uplift of the Adare Trough, Antarctica. Geochemistry Geophysics Geosystems. 6   10.1029/2005gc001027   AbstractWebsite

The Adare Trough, located 100 km northeast of Cape Adare, Antarctica, represents the extinct third arm of a Tertiary spreading ridge between East and West Antarctica. It is characterized by pronounced asymmetric rift flanks elevated up to over 2 km above the trough's basement, accompanied by a large positive mantle Bouguer anomaly. On the basis of recently acquired seismic reflection and ship gravity data, we invert mantle Bouguer anomalies from the Adare Trough and obtain an unexpectedly large oceanic crustal thickness maximum of 9-10.5 km underneath the extinct ridge. A regional positive residual basement depth anomaly between 1 and 2.5 km in amplitude characterizes ocean crust from offshore Victoria Land to the Balleny Islands and north of Iselin Bank. The observations and models indicate that the mid/late Tertiary episode of slow spreading between East and West Antarctica was associated with a mantle thermal anomaly. The increasing crustal thickness toward the extinct ridge indicates that this thermal mantle anomaly may have increased in amplitude through time during the Adare spreading episode. This scenario is supported by a mantle convection model, which indicates the formation and strengthening of a major regional negative upper mantle density anomaly in the southwest Pacific in the last 50 million years. The total amount of post-26 Ma extension associated with Adare Trough normal faulting was about 7.5 km, in anomalously thick oceanic crust with a lithospheric effective elastic thickness (EET) between 3.5 and 5 km. This corresponds to an age between 3 and 5 million years based on a thermal boundary layer model and supports a scenario in which the Adare Trough formed soon after spreading between East and West Antarctica ceased, confined to relatively weak lithosphere with anomalously thick oceanic crust. There is little evidence for major subsequent structural activity in the Adare trough area from the available seismic data, indicating that this part of the West Antarctic Rift system became largely inactive in the early Miocene, with the exception of minor structural reactivation which is visible in the seismic data as offsets up to end of the early Pliocene.

Cande, SC, Stock JM.  2004.  Pacific-Antarctic-Australia motion and the formation of the Macquarie Plate. Geophysical Journal International. 157:399-414.   10.1111/j.1365-246X.2004.02224.x   AbstractWebsite

Magnetic anomaly and fracture zone data on the Southeast Indian Ridge (SEIR) are analysed in order to constrain the kinematic history of the Macquarie Plate, the region of the Australian Plate roughly east of 145 degreesE and south of 52 degreesS. Finite rotations for Australia-Antarctic motion are determined for nine chrons (2Ay, 3Ay, 5o, 6o, 8o, 10o, 12o, 13o and 17o) using data limited to the region between 88 degreesE and 139 degreesE. These rotations are used to generate synthetic flowlines which are compared with the observed trends of the easternmost fracture zones on the SEIR. An analysis of the synthetic flowlines shows that the Macquarie Plate region has behaved as an independent rigid plate for roughly the last 6 Myr. Finite rotations for Macquarie-Antarctic motion are determined for chrons 2Ay and 3Ay. These rotations are summed with Australia-Antarctic rotations to determine Macquarie-Australia rotations. We find that the best-fit Macquarie-Australia rotation poles lie within the zone of diffuse intraplate seismicity in the South Tasman Sea separating the Macquarie Plate from the main part of the Australian Plate. Motion of the Macquarie Plate relative to the Pacific Plate for chrons 2Ay and 3Ay is determined by summing Macquarie-Antarctic and Antarctic-Pacific rotations. The Pacific-Macquarie rotations predict a smaller rate of convergence perpendicular to the Hjort Trench than the Pacific-Australia rotations. The onset of the deformation of the South Tasman Sea and the development of the Macquarie Plate appears to have been triggered by the subduction of young, buoyant oceanic crust near the Hjort Trench and coincided with a clockwise change in Pacific-Australia motion around 6 Ma. The revised Pacific-Australia rotations also have implications for the tectonics of the Alpine Fault Zone of New Zealand. We find that changes in relative displacement along the Alpine Fault have been small over the last 20 Myr. The average rate of convergence over the last 6 Myr is about 40 per cent smaller than in previous models.

Cande, SC, Stock JM.  2004.  Cenozoic reconstructions of the Australia-New Zealand-South Pacific sector of Antarctica. The Cenozoic Southern Ocean : tectonics, sedimentation, and climate change between Australia and Antarctica. ( Exon NF, Kennett JP, Malone MJ, Eds.).:5-18., Washington, DC: American Geophysical Union Abstract
Bowles, J, Tauxe L, Gee J, McMillan D, Cande S.  2003.  Source of tiny wiggles in Chron C5: A comparison of sedimentary relative intensity and marine magnetic anomalies. Geochemistry Geophysics Geosystems. 4   10.1029/2002gc000489   AbstractWebsite

[1] In addition to the well-established pattern of polarity reversals, short-wavelength fluctuations are often present in both sea-surface data ("tiny wiggles'') and near-bottom anomaly data. While a high degree of correlation between different geographical regions suggests a geomagnetic origin for some of these wiggles, anomaly data alone cannot uniquely determine whether they represent short reversals or paleointensity variations. Independent evidence from another geomagnetic recording medium such as deep-sea sediments is required to determine the true nature of the tiny wiggles. We present such independent evidence in the form of sedimentary relative paleointensity from Chron C5. We make the first comparison between a sedimentary relative paleointensity record (ODP Site 887 at 54degreesN, 148degreesW) and deep-tow marine magnetic anomaly data (43degreesN, 131degreesW) [ Bowers et al., 2001] for Chron C5. The sediment cores are densely sampled at similar to2.5 kyr resolution. The inclination record shows no evidence for reverse intervals within the similar to1 myr-long normal Chron C5n.2n. Rock magnetic measurements suggest that the primary magnetic carrier is pseudo-single domain magnetite. We choose a partial anhysteretic magnetization (pARM) as our preferred normalizer, and the resulting relative paleointensity record is used as input to a forward model of crustal magnetization. We then compare the results of this model with the stacked deep-tow anomaly records. The two records show a significant degree of correlation, suggesting that the tiny wiggles in the marine magnetic anomalies are likely produced by paleointensity variations. An analysis of our sampling density suggests that if any reverse intervals exist at this site, they are likely to be <5 kyr in duration. Furthermore, we suggest that reverse intervals during Chron C5n.2n documented in other locations are unlikely to be global.

Gee, JS, Cande SC.  2002.  A surface-towed vector magnetometer. Geophysical Research Letters. 29   10.1029/2002gl015245   AbstractWebsite

[1] We have tested the feasibility of using a commercial motion sensor as a vector magnetometer that can be towed at normal survey speeds behind a research vessel. In contrast to previous studies using a shipboard mounted vector magnetometer, the towed system is essentially unaffected by the magnetization of the towing vessel. Results from a test deployment compare favorably with an earlier vector aeromagnetic survey, indicating that the towed instrument can resolve horizontal and vertical anomalies with amplitudes >30-50 nT. This instrument should be particularly useful in equatorial regions, where the vector anomalies are substantially greater than the corresponding total field anomalies.

Barckhausen, U, Ranero CR, von Huene R, Cande SC, Roeser HA.  2001.  Revised tectonic boundaries in the Cocos Plate off Costa Rica: Implications for the segmentation of the convergent margin and for plate tectonic models. Journal of Geophysical Research-Solid Earth. 106:19207-19220.   10.1029/2001jb000238   AbstractWebsite

The oceanic Cocos Plate subducting beneath Costa Rica has a complex plate tectonic history resulting in segmentation. New lines of magnetic data clearly define tectonic boundaries which separate lithosphere formed at the East Pacific Rise from lithosphere formed at the Cocos-Nazca spreading center. They also define two early phase Cocos-Nazca spreading regimes and a major propagator. In addition to these sharply defined tectonic boundaries are overprinted boundaries from volcanism during passage of Cocos Plate over the Galapagos hot spot. The subducted segment boundaries correspond with distinct changes in upper plate tectonic structure and features of the subducted slab. Newly identified seafloor-spreading anomalies show oceanic lithosphere formed during initial breakup of the Farallon Plate at 22.7 Ma and opening of the Cocos-Nazca spreading center. A revised regional compilation of magnetic anomalies allows refinement of plate tectonic models for the early history of the Cocos-Nazca spreading center. At 19.5 Ma a major ridge jump reshaped its geometry, and after similar to 14.5 Ma multiple southward ridge jumps led to a highly asymmetric accretion of lithosphere. A suspected cause of ridge jumps is an interaction of the Cocos-Nazca spreading center with the Galapagos hot spot.

Bowers, NE, Cande SC, Gee JS, Hildebrand JA, Parker RL.  2001.  Fluctuations of the paleomagnetic field during chron C5 as recorded in near-bottom marine magnetic anomaly data. Journal of Geophysical Research-Solid Earth. 106:26379-26396.   10.1029/2001jb000278   AbstractWebsite

Near-bottom magnetic data contain information on paleomagnetic field fluctuations during chron C5 as observed in both the North and South Pacific. The North Pacific data include 12 survey lines collected with a spatial separation of up to 120 kin, and the South Pacific data consist of a single long line collected on the west flank of the East Pacific Rise (EPR) at 19 degreesS. The North Pacific magnetic profiles reveal a pattern of linear, short-wavelength (2 to 5 km) anomalies (tiny wiggles) that are highly correlated over the shortest (3.8 km) to longest (120 km) separations in the survey. Magnetic inversions incorporating basement topography show that these anomalies are not caused by the small topographic relief. The character of the near-bottom magnetic profile from anomaly 5 on the west flank of the EPR, formed at a spreading rate more than twice that of the North Pacific, displays a remark-able similarity to the individual and stacked lines from the North Pacific survey area, Over distances corresponding to 1 m.y., 19 lows in the magnetic anomaly profile can be correlated between the North and South Pacific lines. Modeling the lows as due to short polarity events suggests that they may be caused by rapid swings of the magnetic field between normal and reversed polarities with little or no time in the reversed state. Owing to the implausibly high number of reversals required to account for these anomalies and the lack of any time in the reversed state, we conclude that the near-bottom signal is primarily a record of pateointensity fluctuations during chron C5. Spectral analysis of the North Pacific near bottom lines shows that the signal is equivalent to a paleointensity curve with a temporal resolution of 40 to 60 kyr, while measurements of the smallest separations of correlatable dips in the field suggest a temporal resolution of 36 kyr.

Srivastava, SP, Sibuet JC, Cande S, Roest WR, Reid ID.  2000.  Magnetic evidence for slow seafloor spreading during the formation of the Newfoundland and Iberian margins. Earth and Planetary Science Letters. 182:61-76.   10.1016/s0012-821x(00)00231-4   AbstractWebsite

There is considerable debate concerning the nature and origin of the thin crust within the ocean-continent transition (OCT) zones of many passive non-volcanic continental margins, located between thinned continental and true oceanic crust, This crust is usually found to be underlain by upper mantle material of 7.2-7.4 km/s velocity at shallow depths (1-2 km). It has been proposed that such crustal material could have originated either by exhumation of upper mantle material during rifting of continents or by slow seafloor spreading. One of the examples of occurrence of such a crust are the conjugate margins of Newfoundland and Iberia. Here we present an interpretation of magnetic data from these regions to show that their OCT zones are underlain by crustal material formed by slow seafloor spreading (6.7 mm/yr) soon after Iberia separated from the Grand Banks of Newfoundland in the late Jurassic. Similarities in the magnetic anomalies and velocity distributions from these regions with those from the Sohm Abyssal Plain, a region lying immediately south of the Newfoundland Basin and formed by seafloor spreading at a similar rate of spreading, give further support to such an interpretation. The idea that these regions were formed by unroofing of upper mantle during rifting of Iberia from Newfoundland may be likely but the presence of weak magnetic anomalies in these regions, which bear all the characteristics of seafloor spreading anomalies, makes it difficult to ignore the possibility that these regions could be underlain by oceanic crust formed during slow seafloor spreading. The similarities in velocity structure and the presence of small amplitude magnetic anomalies both across this pair of conjugate margins of the North Atlantic and that of the Labrador Sea suggest that this OCT velocity structure may be the norm rather than the exception across those passive non-volcanic margins where the initial seafloor spreading was slow. Furthermore, the existence of similar velocity distributions along a few active spreading centers raises the possibility of formation of similar crust across slow spreading ridges. (C) 2000 Elsevier Science B.V. All rights reserved.

Cande, SC, Stock JM, Muller RD, Ishihara T.  2000.  Cenozoic motion between East and West Antarctica. Nature. 404:145-150.   10.1038/35004501   AbstractWebsite

The West Antarctic rift system is the result of late Mesozoic and Cenozoic extension between East and West Antarctica, and represents one of the largest active continental rift systems on Earth. But the timing and magnitude of the plate motions leading to Be development of this rift system remain poorly known, because of a lack of magnetic anomaly and fracture zone constraints on seafloor spreading. Here we report on magnetic data, gravity data and swath bathymetry collected in several areas of the south Tasman Sea and northern Boss Sea. These results enable us to calculate mid-Cenozoic rotation parameters for East and West Antarctica. These rotations show that there was roughly 180 km of separation in the western Ross Sea embayment in Eocene and Oligocene time. This episode of extension provides a tectonic setting for several significant Genozoic tectonic events in the Ross Sea embayment including the uplift of the Transantarctic Mountains and the deposition of large thicknesses of Oligocene sediments. Inclusion of this East-West Antarctic motion in the plate circuit linking the Australia, Antarctic and Pacific plates removes a puzzling gap between the Lord Howe rise and Campbell plateau found in previous early Tertiary reconstructions of the New Zealand region. Determination of this East-West Antarctic motion also resolves a long standing controversy regarding the contribution of deformation in this region to the global plate circuit linking the Pacific to the rest of the world.

Tikku, AA, Cande SC.  2000.  On the fit of Broken Ridge and Kerguelen plateau. Earth and Planetary Science Letters. 180:117-132.   10.1016/s0012-821x(00)00157-6   AbstractWebsite

We present revised finite rotation parameters for Australia and East Antarctica in the Early Tertiary incorporating new magnetic data off of Wilkes Land, Antarctica. Reconstructions based on these and recently published rotation parameters document a relatively stationary position of Broken Ridge abutted against Central Kerguelen Plateau between chron 34 (83 Ma) and chron 20 (43 Ma), prior to the commencement of seafloor spreading between the two Late Cretaceous features. These reconstructions are significant as they are the first which are consistent with geological and geophysical constraints in not producing an overlap of Broken Ridge and Kerguelen Plateau between chron 34 and chron 24 (53 Ma) and not requiring significant extension or strike-slip motion within Kerguelen Plateau. We also find that the finite rotations for chrons 20 to 34 outline the area of rough topography inferred from the satellite-derived free-air gravity for the Diamantina Zone and Labuan Basin. A consequence of these rotations is that there is considerable overlap of continental crust in the region of Tasmania, the South Tasman Rise and East Antarctica in the Late Cretaceous. Solutions to this problem may imply either post-Santonian (less than or equal to 79 Ma) extension or transform motion in the Bass Strait, or late Cretaceous or Cenozoic extension in Wilkes Land. The reconstructions also agree with prior estimates of roughly 150 km of motion between East and West Antarctica since chron 20. (C) 2000 Elsevier Science B.V. All rights reserved.