Publications

Export 110 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
H
Hathaway, DH, Somerville RCJ.  1987.  Thermal Convection in a Rotating Shear Flow. Geophysical and Astrophysical Fluid Dynamics. 38:43-&.   10.1080/03091928708210105   AbstractWebsite

A three-dimensional and time-dependent numerical model is used to simulate thermal convection imbedded in a shear flow in a rotating atmosphere. The fluid is confined to a plane parallel layer with periodic side boundaries, and the rotation vector is tilted from the vertical to represent a low-latitude region. An eastward mean flow is imposed which is constant with depth but has a jet-like profile in latitude. The convection is driven by a prescribed vertical temperature difference. Interactions between the shear flow and the convection extract energy from the mean flow and decrease the mean shear in the nonrotating case. In the presence of rotation, however, the convection can feed energy into the jet and enhance the mean shear. Mean meridional circulations are also produced by the effects of rotation. The Coriolis force on the vertical flows in these circulations contributes to the changes in the mean zonal wind. Three rotating cases are examined which show this behavior in varying degrees. A simple mechanism is described which explains how the convection can produce this countergradient flux of momentum in a rotating layer. Although the system studied is highly idealized, it exhibits momentum fluxes and wave-like patterns which, for certain parameter values, are similar to those observed on Jupiter.

I
Iacobellis, SF, Somerville RCJ.  2006.  Evaluating parameterizations of the autoconversion process using a single-column model and Atmospheric Radiation Measurement Program measurements. Journal of Geophysical Research-Atmospheres. 111   10.1029/2005jd006296   AbstractWebsite

A single-column model is used to evaluate the performance of two types of autoconversion parameterizations. The model results are compared to data collected at the Atmospheric Radiation Measurement Program's Southern U. S. Great Plains site. The model is run over a period covering 2 years (2000-2001), and the results are analyzed for time periods varying from hourly to seasonal. During a relatively short 27-hour period during March 2000 characterized primarily by shallow frontal clouds, modeled values of cloud liquid water were better simulated using a Manton-Cotton-type autoconversion parameterization. However, over longer timescales representing a multitude of different cloud types and meteorological conditions, a Sundqvist-type parameterization produced better results. Analysis of the model results indicates that the Manton-Cotton-type parameterization does better during periods when shallow clouds are present without any overlying clouds, while the Sundqvist-type parameterization is preferred during periods when high and low clouds coexist. A possible explanation is that precipitation from high clouds may not be represented well by the SCM, thus affecting the precipitation formation rates in any lower clouds. Sensitivity tests using the Manton-Cotton parameterization indicate that the autoconversion rate is sensitive to the specification of the cloud droplet number concentration (N-c). The single-column model, as well as many general circulation models, specify N-c as a constant value. However, limited in situ measurements suggest that N-c varies significantly in time. The mean modeled top-of-atmosphere cloud radiative forcing during the 2-year period 2000-2001 differed by 3 W m(-2) as the cloud droplet concentration was varied between minimum and maximum values suggested by the in situ measurements. These results imply that model-produced hydrological cycle and cloud-radiation interactions could be better modeled using an accurate time-dependent measure of the cloud droplet concentration.

Iacobellis, SF, Somerville RCJ.  1991.  Diagnostic modeling of the Indian monsoon onset: Part 1: Model description and validation. Journal of the Atmospheric Sciences. 48:1948-1959.   10.1175/1520-0469(1991)048<1948:dmotim>2.0.co;2   AbstractWebsite

A new type of diagnostic model is developed and applied to the study of the onset of the Indian summer monsoon. The purpose of the model is to aid in the analysis of interactions between the physical processes that affect the monsoon onset. The model is one-dimensional and consists of a single atmospheric column coupled to an ocean mixed layer. The atmospheric component of the model includes representations of all the physical processes typically included in general circulation models, except that the fields of vertical motion and horizontal advection are specified at each time step from observational data rather than predicted. With these time-dependent observational inputs, the model is then integrated numerically to produce consistent profiles of atmospheric temperature and humidity, together with energy budget components and other diagnostic quantities. The atmospheric model is based on the thermodynamic energy equation and a conservation equation for water. Parameterizations of the effects of solar and terrestrial radiation, interactive cloudiness, convection, condensation, surface fluxes, and other processes are adapted from current practice in numerical weather prediction and general circulation modeling. The model includes 15 layers in the vertical and employs a time step of 1 hour. Results are presented from four-week integrations at different locations over the Arabian Sea during the 1979 monsoon onset period. Comparison of model results with independent observational data shows that the model demonstrates considerable skill in reproducing the large increase in precipitation associated with the monsoon onset, together with significant changes in surface fluxes, cloudiness, and other variables. This realism suggests that the model is a promising tool for achieving an increased understanding of the role of interacting physical processes and for developing improved prognostic models for simulating the monsoon onset.

Iacobellis, SF, Frouin R, Razafimpanilo H, Somerville RCJ, Piper SC.  1994.  North African savanna fires and atmospheric carbon dioxide. Journal of Geophysical Research-Atmospheres. 99:8321-8334.   10.1029/93jd03339   AbstractWebsite

The effect of north African savanna fires on atmospheric CO2 is investigated using a tracer transport model. The model uses winds from operational numerical weather prediction analyses and provides CO2 Concentrations as a function of space and time. After a spin-up period of several years, biomass-burning sources are added, and model experiments are run for an additional year, utilizing various estimates of CO2 sources. The various model experiments show that biomass burning in the north African savannas significantly affects CO2 concentrations in South America. The effect is more pronounced during the period from January through March, when biomass burning in South America is almost nonexistent. During this period, atmospheric CO2 concentrations in parts of South America typically may increase by 0.5 to 0.75 ppm at 970 mbar, the average pressure of the lowest model layer. These figures are above the probable uncertainty level, as model runs with biomass-burning sources estimated from independent studies using distinct data sets and techniques indicate. From May through September, when severe biomass burning occurs in South America, the effect of north African savanna fires over South America has become generally small at 970 mbar, but north of the equator it may be of the same magnitude or larger than the effect of South American fires. The CO2 concentration increase in the extreme northern and southern portions of South America, however, is mostly due to southern African fires, whose effect may be 2-3 times larger than the effect of South American fires at 970 mbar. Even in the central part of the continent, where local biomass-burning emissions are maximum, southern African fires contribute to at least 15% of the CO2 concentration increase at 970 mbar. At higher levels in the atmosphere, less CO2 emitted by north African savanna fires reaches South America, and at 100 mbar no significant amount of CO2 is transported across the Atlantic Ocean. The vertical structure of the CO2 concentration increase due to biomass burning differs substantially, depending on whether sources are local or remote. A prominent maximum Of CO2 concentration increase in the lower layers characterizes the effect of local sources, whereas a more homogenous profile of CO2 concentration increase characterizes the effect of remote sources. The results demonstrate the strong remote effects of African biomass burning which, owing to the general circulation of the atmosphere, are felt as far away as South America.

Iacobellis, S, Somerville RCJ, Lane DE.  2001.  SCM Sensitivity to Microphysics, Radiation, and Convection Algorithms. IRS 2000: Current Problems in Atmospheric Radiation : Proceedings of the International Radiation Symposium, St. Petersberg, Russia, 24-29 July 2000. ( Smith WL, Timofeyev YM, Eds.).:1287-1290.: A Deepak Publishing Abstract
n/a
Iacobellis, SF, Somerville RCJ.  1991.  Diagnostic modeling of the Indian monsoon onset: Part 2: Budget and sensitivity studies. Journal of the Atmospheric Sciences. 48:1960-1971.   10.1175/1520-0469(1991)048<1960:dmotim>2.0.co;2   AbstractWebsite

A one-dimensional diagnostic coupled air-sea model (described in the companion paper) is applied to the analysis of the heat and moisture budgets over the Arabian Sea during the 1979 monsoon onset period. The surface energy budget, which is dominated by a balance between net shortwave radiation and latent heat during the preonset period, is significantly altered just prior to the onset itself. At that time, cloud cover sharply increases and the net shortwave flux correspondingly decreases. Subsequently, increasing surface winds produce a large increase in the latent heat flux a few days after the onset. In the free atmosphere, the heat budget displays a similarly dramatic change. At 500 mb, radiative fluxes and horizontal and vertical advection dominate the heat budget before the onset. After the onset, however, the budget is primarily a balance between deep convective heating and vertical advective cooling. The 500-mb moisture budget displays a correspondingly strong effect. Before the onset, horizontal advection of moisture is the dominant term, while after the onset, the distribution by convection of the surface moisture flux, together with moisture removal by large-scale condensation, becomes important. Sensitivity studies with the model illuminate the role of interacting physical processes. Model results show that the moistening due to horizontal advection tends to alter the radiative fluxes so as to hinder the formation and maintenance of the inversion that characterizes preonset conditions, thus favoring the formation of deep convection. This result is consistent with a suggestion by Doherty and Newell. Additionally, the interaction between the atmosphere and the upper ocean is explored in a series of sensitivity experiments. The decrease in ocean mixed-layer temperature, which follows the monsoon onset, acts to reduce the latent heat flux significantly. This effect may influence the duration and intensity of the monsoon, as well as the total precipitation, and underscores the potential importance of an accurate specification of sea surface temperature for monsoon prediction.

Iacobellis, SF, Somerville RCJ.  2000.  Implications of microphysics for cloud-radiation parameterizations: Lessons from TOGA COARE. Journal of the Atmospheric Sciences. 57:161-183.   10.1175/1520-0469(2000)057<0161:iomfcr>2.0.co;2   AbstractWebsite

A single-column model (SCM) and observational data collected during TOGA COARE were used to investigate the sensitivity of model-produced cloud properties and radiative fluxes to the representation of cloud microphysics in the cloud-radiation parameterizations. Four 78-day SCM numerical experiments were conducted for the atmospheric column overlying the COARE Intensive Flux Array. Each SCM experiment used a different cloud-radiation parameterization with a different representation of cloud microphysics. All the SCM experiments successfully reproduced most of the observed temporal variability in precipitation, cloud fraction, shortwave and longwave cloud forcing, and downwelling surface shortwave flux. The magnitude and temporal variability of the downward surface longwave flux was overestimated by all the SCM experiments. This bins is probably due to clouds forming too low in the model atmosphere. Time-averaged model results were used to examine the sensitivity of model performance to the differences between the four cloud-radiation parameterization packages. The SCM versions that calculated cloud amount as a function of cloud liquid water, instead of using a relative humidity-based cloud scheme, produced smaller amounts of both low and deep convective clouds. Additionally, larger high (cirrus) cloud emissivities were obtained with interactive cloud liquid water schemes than with the relative humidity-based scheme. Surprisingly. calculating cloud optical properties as a function of cloud liquid water amount, instead of parameterizing them based on temperature, humidity, and pressure, resulted in relatively little change in radiative fluxes. However. model radiative fluxes were sensitive to the specification of the effective cloud droplet radius. Optically thicker low clouds and optically thinner high clouds were produced when an interactive effective cloud droplet radius scheme was used instead of specifying a constant value. Comparison of model results to both surface and satellite observations revealed that model experiments that calculated cloud properties as a function of cloud liquid water produced more realistic cloud amounts and radiative fluxes. The most realistic vertical distribution of clouds was obtained from the SCM experiment that included the most complete representation of cloud microphysics. Due to the limitations of SCMs. the above conclusions are model dependent and need to be tested in a general circulation model.

Iacobellis, SF, McFarquhar GM, Mitchell DL, Somerville RCJ.  2003.  The sensitivity of radiative fluxes to parameterized cloud microphysics. Journal of Climate. 16:2979-2996.   10.1175/1520-0442(2003)016<2979:tsorft>2.0.co;2   AbstractWebsite

The sensitivity of modeled radiative fluxes to the specification of cloud microphysical parameterizations of effective radius and fallout are investigated using a single-column model and measurements from the Atmospheric Radiation Measurement (ARM) Program. The single-column model was run with data for the 3-month period of June - August 2000 at the ARM Southern Great Plains site forced with operational numerical weather prediction data. Several different packages of cloud microphysical parameterizations were used in the single-column model. The temporal evolution of modeled cloud amount as well as surface radiative fluxes from a control run compare well with ARM measurements. Mean ice particle fall speeds varied significantly with respect to the assumed ice particle habit. As particle fall speeds increased, the overall cloud fraction, cloud height, and grid-averaged ice water path decreased. The outgoing longwave radiation (OLR) differs by up to 4 W m(-2) over the range of fall speeds examined, while shortwave fluxes varied little as most of the changes in cloud properties occurred at times of minimal solar radiation. Model results indicate that surface and top-of-atmosphere radiative fluxes are sensitive to the scheme used to specify the ice particle effective radius. On the seasonal timescale this sensitivity is on the order of 4 W m(-2) and on the daily timescale can be as large as 32 W m(-2). A conclusive statement as to which microphysical scheme is performing best is not achievable until cloud microphysical measurements include an accurate representation of small ice particles. The modeled variance of the ice particle effective radius at any given height in the model is considerably smaller than that suggested by measurements. Model results indicate that this underestimation of the ice particle effective radius variance can alter the seasonal mean top-of-atmosphere radiative fluxes by up to 5 W m(-2) and the mean longwave cooling rate by up to 0.2degrees K day(-1) near the location of maximum cloud amount. These seemingly modest flux sensitivities may have important implications for numerical climate simulations. These numerical experiments and observational comparisons have provided valuable physical insight into ice cloud - radiation physics and also into the mechanisms through which contemporary cloud microphysical parameterizations interact with climate model radiation schemes. In particular, the results demonstrate the importance of the smaller ice particles and emphasize the critical role played by not only the average particle size and shape but also the width of the ice particle effective radius distribution about its mean. In fact, the results show that this variability in particle size can sometimes play a greater role in cloud - radiation interactions than the more obvious variations in cloud amount due to changes in ice particle fall speed.

Iacobellis, SF, Frouin R, Somerville RCJ.  1999.  Direct climate forcing by biomass-burning aerosols: Impact of correlations between controlling variables. Journal of Geophysical Research-Atmospheres. 104:12031-12045.   10.1029/1999jd900001   AbstractWebsite

Estimates of the direct climate forcing by condensed organic species resulting from biomass burning have been made using bulk radiative transfer models of various complexity and the SUNRAY radiation code of the European Centre for Medium-Range Weather Forecasts general circulation model. Aerosols arising from the burning of tropical forests and savannas as well as those from biomass fires outside the tropics are considered. The bulk models give values ranging from -1.0 to -0.6 W m(-2), which compare with -0.7 W m(-2) using the SUNRAY code. There appears to be significant uncertainty in these values due to uncertainties in the model input parameters. The difference is only 13% between the forcing obtained by taking into account the spatial and temporal distribution of the controlling variables and the forcing obtained using global averages fur all the variables. This indicates that the effects of variations in the controlling variables tend to compensate. Yet the forcing varies by up to 34% depending on which variables are set to global averages. The SUNRAY results show that the efficiency at which the biomass-burning aerosols backscatter sunlight in cloudy conditions is 0.53, a value significantly higher than that reported for sulfate aerosols. Most of the difference is due to the relatively low latitude (hence low sun zenith angle) of the biomass-burning aerosol sources relative to the sulfate aerosol sources. The implication is that clouds should not be assumed to have a reflectivity of unity in bulk models. Comparison of SUNRAY and bulk model results points to other potential problems with bulk models. First, the use in bulk models of mean aerosol optical properties across the entire solar spectrum has significant impact on the calculated forcing and may account for 23% of the difference between SUNRAY and bulk model estimates in clear-sky conditions. Second, neglecting multiple scattering in bulk models introduces significant differences in the clear-sky forcing at high sun zenith angles.

IPCC.  2007.  Summary for Policymakers. Climate change 2007 : the physical science basis : contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. ( Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H, Eds.)., Cambridge; New York: Cambridge University Press Abstract
n/a
Isakari, SM, Somerville RCJ.  1989.  Accurate numerical solutions for Daisyworld. Tellus Series B-Chemical and Physical Meteorology. 41:478-482.   10.1111/j.1600-0889.1989.tb00324.x   AbstractWebsite

The numerical solutions of the Daisyworld model of Watson and Lovelock contain significant quantitative errors. We give accurate numerical solutions for the same cases. We also show how the errors may have been caused by failure to enforce computational constraints such as strict tests of steadiness. The errors which we find do not qualitatively alter the main conclusions of Watson and Lovelock, but they illustrate a peril. The Daisyworld model is an example of a mathematical system which is too idealized to be compared with observations but too complex to be solved analytically. Such systems can be probed only by numerical simulations, so it is crucial that the computations be trustworthy.

J
Jouzel, J, Somerville RCJ.  2008.  The global consensus and Intergovernmental Panel on Climate Change. Facing climate change together. ( Gautier C, Fellous JL, Eds.).:12-29., Cambridge, UK; New York: Cambridge University Press Abstract

"This volume brings together scientists from the US and Europe to review the state-of-the-art in climate change science; all of them have extensive experience with climate research and international collaboration. scientific jargon has been minimized for readers from different backgrounds.""This book is written for scientists and students in a wide range of fields, such as atmospheric science, physics, chemistry, biology, geography, geology, and socioeconomics, who are not necessarily specialists in climatology, but are seeking an accessible and broad review of climate change issues."--BOOK JACKET.

K
Kooperman, GJ, Pritchard MS, Somerville RCJ.  2013.  Robustness and sensitivities of central US summer convection in the super-parameterized CAM: Multi-model intercomparison with a new regional EOF index. Geophysical Research Letters. 40:3287-3291.   10.1002/grl.50597   AbstractWebsite

Mesoscale convective systems (MCSs) can bring up to 60% of summer rainfall to the central United States but are not simulated by most global climate models. In this study, a new empirical orthogonal function based index is developed to isolate the MCS activity, similar to that developed by Wheeler and Hendon (2004) for the Madden-Julian Oscillation. The index is applied to compactly compare three conventional- and super-parameterized (SP) versions (3.0, 3.5, and 5.0) of the National Center for Atmospheric Research Community Atmosphere Model (CAM). Results show that nocturnal, eastward propagating convection is a robust effect of super-parameterization but is sensitive to its specific implementation. MCS composites based on the index show that in SP-CAM3.5, convective MCS anomalies are unrealistically large scale and concentrated, while surface precipitation is too weak. These aspects of the MCS signal are improved in the latest version (SP-CAM5.0), which uses high-order microphysics.

Kooperman, GJ, Pritchard MS, Ghan SJ, Wang MH, Somerville RCJ, Russell LM.  2012.  Constraining the influence of natural variability to improve estimates of global aerosol indirect effects in a nudged version of the Community Atmosphere Model 5. Journal of Geophysical Research-Atmospheres. 117   10.1029/2012jd018588   AbstractWebsite

Natural modes of variability on many timescales influence aerosol particle distributions and cloud properties such that isolating statistically significant differences in cloud radiative forcing due to anthropogenic aerosol perturbations (indirect effects) typically requires integrating over long simulations. For state-of-the-art global climate models (GCM), especially those in which embedded cloud-resolving models replace conventional statistical parameterizations (i.e., multiscale modeling framework, MMF), the required long integrations can be prohibitively expensive. Here an alternative approach is explored, which implements Newtonian relaxation (nudging) to constrain simulations with both pre-industrial and present-day aerosol emissions toward identical meteorological conditions, thus reducing differences in natural variability and dampening feedback responses in order to isolate radiative forcing. Ten-year GCM simulations with nudging provide a more stable estimate of the global-annual mean net aerosol indirect radiative forcing than do conventional free-running simulations. The estimates have mean values and 95% confidence intervals of -1.19 +/- 0.02 W/m(2) and -1.37 +/- 0.13 W/m(2) for nudged and free-running simulations, respectively. Nudging also substantially increases the fraction of the world's area in which a statistically significant aerosol indirect effect can be detected (66% and 28% of the Earth's surface for nudged and free-running simulations, respectively). One-year MMF simulations with and without nudging provide global-annual mean net aerosol indirect radiative forcing estimates of -0.81 W/m(2) and -0.82 W/m(2), respectively. These results compare well with previous estimates from three-year free-running MMF simulations (-0.83 W/m(2)), which showed the aerosol-cloud relationship to be in better agreement with observations and high-resolution models than in the results obtained with conventional cloud parameterizations. Citation: Kooperman, G. J., M. S. Pritchard, S. J. Ghan, M. Wang, R. C. J. Somerville, and L. M. Russell (2012), Constraining the influence of natural variability to improve estimates of global aerosol indirect effects in a nudged version of the Community Atmosphere Model 5, J. Geophys. Res., 117, D23204, doi:10.1029/2012JD018588.

Kooperman, GJ, Pritchard MS, Somerville RCJ.  2014.  The response of US summer rainfall to quadrupled CO2 climate change in conventional and superparameterized versions of the NCAR community atmosphere model. Journal of Advances in Modeling Earth Systems.   10.1002/2014MS000306   Abstract

Observations and regional climate modeling (RCM) studies demonstrate that global climate models (GCMs) are unreliable for predicting changes in extreme precipitation. Yet RCM climate change simulations are subject to boundary conditions provided by GCMs and do not interact with large-scale dynamical feedbacks that may be critical to the overall regional response. Limitations of both global and regional modeling approaches contribute significant uncertainty to future rainfall projections. Progress requires a modeling framework capable of capturing the observed regional-scale variability of rainfall intensity without sacrificing planetary scales. Here the United States summer rainfall response to quadrupled CO2 climate change is investigated using conventional (CAM) and superparameterized (SPCAM) versions of the NCAR Community Atmosphere Model. The superparameterization approach, in which cloud-resolving model arrays are embedded in GCM grid columns, improves rainfall statistics and convective variability in global simulations. A set of 5 year time-slice simulations, with prescribed sea surface temperature and sea ice boundary conditions harvested from preindustrial and abrupt four times CO2 coupled Community Earth System Model (CESM/CAM) simulations, are compared for CAM and SPCAM. The two models produce very different changes in mean precipitation patterns, which develop from differences in large-scale circulation anomalies associated with the planetary-scale response to warming. CAM shows a small decrease in overall rainfall intensity, with an increased contribution from the weaker parameterized convection and a decrease from large-scale precipitation. SPCAM has the opposite response, a significant shift in rainfall occurrence toward higher precipitation rates including more intense propagating Central United States mesoscale convective systems in a four times CO2 climate.

L
Lane, DE, Somerville RCJ, Iacobellis SF.  2000.  Sensitivity of cloud and radiation parameterizations to changes in vertical resolution. Journal of Climate. 13:915-922.   10.1175/1520-0442(2000)013<0915:socarp>2.0.co;2   AbstractWebsite

The importance of vertical resolution to the parameterization of cloud-radiation processes in climate models is examined. Using a one-dimensional single-column model containing a typical suite of physical parameterizations, the authors test 12 different vertical resolutions, ranging from 16 to 60 layers. The model products are evaluated against observational data taken during three intensive observation periods from the Atmospheric Radiation Measurement Program. The simulated values of cloud-radiation variables display a marked sensitivity to changes in vertical resolution. This sensitivity is apparent in all the model variables examined. The cloud fraction varies typically by approximately 10% over the range of resolutions tested, a substantial amount when compared to the typical observed values of about 50%. The outgoing longwave radiation typically changes by approximately 10-20 W m(-2) as resolution is varied, which is of the order of 5%-10% of the observed value. The downwelling shortwave radiation change is somewhat smaller but is still significant. Furthermore, the model results have not converged even at a resolution of 60 layers, and there are systematic differences between model results and observations.

Lane, DE, Goris K, Somerville RCJ.  2002.  Radiative transfer through broken clouds: Observations and model validation. Journal of Climate. 15:2921-2933.   10.1175/1520-0442(2002)015<2921:rttbco>2.0.co;2   AbstractWebsite

Stochastic radiative transfer is investigated as a method of improving shortwave cloud-radiation parameterizations by incorporating the effects of statistically determined cloud-size and cloud-spacing distributions. Ground-based observations from 16 days at the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains (SGP) site are used to derive a statistical description of scattered clouds. The data are ingested into a stochastic, shortwave radiative transfer model. The typical cloud-base height of the most prevalent cloud type, fair-weather cumulus, is 1100 m. Low cloud-fraction conditions are common, with observed cloud liquid water paths between 20 and 80 g m(-2). Cloud-fraction amounts calculated using ceilometer data compare reasonably well with those reported in weather logs. The frequency distribution of cloud size can be described by a decaying exponential: the number of clouds decreases significantly with increasing cloud size. The minimum detectable cloud size is 200 m and the largest observed cloud is approximately 4 km. Using both a stochastic model and a plane-parallel model, the predicted radiation fields are compared and evaluated against an independent observational dataset. The stochastic model is sensitive to input cloud fraction and cloud field geometry. This model performs poorly when clouds are present in adjacent model layers due to random overlapping of the clouds. Typically, the models agree within 30 W m(-2) for downwelling shortwave radiation at the surface. Improvement in the observations used to calculate optical depth will be necessary to realize fully the potential of the stochastic technique.

Lane, DE, Somerville RCJ, Iacobellis S.  2001.  Evaluation of a Stochastic Radiative Transfer Model Using Ground-based Measurements. IRS 2000: Current Problems in Atmospheric Radiation : Proceedings of the International Radiation Symposium, St. Petersberg, Russia, 24-29 July 2000. ( Smith WL, Timofeyev YM, Eds.).:245-248.: A Deepak Publishing Abstract
n/a
Lane-Veron, DE, Somerville RCJ.  2004.  Stochastic theory of radiative transfer through generalized cloud fields. Journal of Geophysical Research-Atmospheres. 109   10.1029/2004jd004524   AbstractWebsite

[1] We present a coherent treatment, based on linear kinetic theory, of stochastic radiative transfer in an atmosphere containing clouds. A brief summary of statistical cloud radiation models is included. We explore the sensitivities inherent in the stochastic approach by using a well-known plane-parallel model developed by Fouquart and Bonnel together with our own stochastic model which generalizes earlier work of F. Malvagi, R. N. Byrne, G. C. Pomraning, and R. C. J. Somerville. In overcast conditions, in comparison to the plane parallel model, the stochastic model underestimates transmittance at small optical depths (< 7) and overestimates transmittance at large optical depths. The stochastic model is strongly sensitive to cloud optical properties, including cloud water content and cloud droplet effective radius. The extension of the stochastic approach to an atmospheric general circulation model parameterization appears to be most appropriate for cloud fraction ranging from 25 to 70%. We conclude that stochastic theory holds substantial promise as a modeling approach for calculating shortwave radiative transfer through partially cloudy fields. Unlike cloud-resolving models and Monte Carlo cloud models, stochastic cloud models do not depend on specific realizations of the cloud field. Instead, they calculate the transfer of radiation through a cloudy atmosphere whose properties are known statistically in the form of probability density functions characterizing cloud geometry and cloud optical properties. The advantage of the stochastic approach is its theoretical generality and its potential for representing a complex cloud field realistically at modest computational cost.

Le Treut, H, Somerville RCJ, Cubasch U, Ding Y, Mauritzen C, Mokssit A, Peterson T, Prather M.  2007.  Historical Overview of Climate Change. Climate change 2007 : the physical science basis : contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. ( Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H, Eds.)., Cambridge; New York: Cambridge University Press Abstract
n/a
Lee, WH, Iacobellis SF, Somerville RCJ.  1997.  Cloud radiation forcings and feedbacks: General circulation model tests and observational validation. Journal of Climate. 10:2479-2496.   10.1175/1520-0442(1997)010<2479:crfafg>2.0.co;2   AbstractWebsite

Using an atmospheric general circulation model (the National Center for Atmospheric Research Community Climate Model: CCM2), the effects on climate sensitivity of several different cloud radiation parameterizations have been investigated. In addition to the original cloud radiation scheme of CCM2, four parameterizations incorporating prognostic cloud water were tested: one version with prescribed cloud radiative properties and three other versions with interactive cloud radiative properties. The authors' numerical experiments employ perpetual July integrations driven by globally constant sea surface temperature forcings of two degrees, both positive and negative. A diagnostic radiation calculation has been applied to investigate the partial contributions of high, middle, and low cloud to the total cloud radiative forcing, as well as the contributions of water vapor, temperature, and cloud to the net climate feedback. The high cloud net radiative forcing is positive, and the middle and low cloud net radiative forcings are negative. The total net cloud forcing is negative in all of the model versions. The effect of interactive cloud radiative properties on global climate sensitivity is significant. The net cloud radiative feedbacks consist of quite different shortwave and longwave components between the schemes with interactive cloud radiative properties and the schemes with specified properties. The increase in cloud water content in the warmer climate leads to optically thicker middle-and low-level clouds and in turn to negative shortwave feedbacks for the interactive radiative schemes, while the decrease in cloud amount simply produces a positive shortwave feedback for the schemes with a specified cloud water path. For the longwave feedbacks, the decrease in high effective cloudiness for the schemes without interactive radiative properties leads to a negative feedback, while for the other cases, the longwave feedback is positive. These cloud radiation parameterizations are empirically validated by using a single-column diagnostic model, together with measurements from the Atmospheric Radiation Measurement program and from the Tropical Ocean Global Atmosphere Combined Ocean-Atmosphere Response Experiment. The inclusion of prognostic cloud water produces a notable improvement in the realism of the parameterizations, as judged by these observations. Furthermore, the observational evidence suggests that deriving cloud radiative properties from cloud water content and microphysical characteristics is a promising route to further improvement.

Lee, WH, Somerville RCJ.  1996.  Effects of alternative cloud radiation parameterizations in a general circulation model. Annales Geophysicae-Atmospheres Hydrospheres and Space Sciences. 14:107-114.   10.1007/s00585-996-0107-6   AbstractWebsite

Using the National Center for Atmospheric Research (MCAR) general circulation model (CCM2), a suite of alternative cloud radiation parameterizations has been tested. Our methodology relies on perpetual July integrations driven by +/-2 K sea surface temperature forcing. The tested parameterizations include relative humidity based clouds and versions of schemes involving a prognostic cloud water budget. We are especially interested in testing the effect of cloud optical thickness feedbacks on global climate sensitivity. All schemes exhibit negative cloud radiation feedbacks, i.e., cloud moderates the global warming. However, these negative net cloud radiation feedbacks consist of quite different shortwave and longwave components between a scheme with interactive cloud radiative properties and several schemes with specified cloud water paths. An increase in cloud water content in the warmer climate leads to optically thicker middle- and low-level clouds and in turn negative shortwave feedbacks for the interactive radiative scheme, while a decrease in cloud amount leads to a positive shortwave feedback for the other schemes. For the longwave feedbacks, a decrease in high effective cloudiness for the schemes without interactive radiative properties leads to a negative feedback, while no distinct changes in effective high cloudiness and the resulting feedback are exhibited for the scheme with interactive radiative properties. The resulting magnitude of negative net cloud radiation feed-back is largest for the scheme with interactive radiative properties. Even though the simulated values of cloud radiative forcing for the present climate using this method differ most from the observational data, the approach shows great promise for the future.

Leung, K, Velado M, Subramanian A, Zhang GJ, Somerville RCJ, Shen SSP.  2016.  Simulation of high-resolution precipitable water data by a stochastic model with a random trigger. Advances in Data Science and Adaptive Analysis.   10.1142/S2424922X16500066   Abstract

We use a stochastic differential equation (SDE) model with a random precipitation trigger for mass balance to simulate the 20 s temporal resolution column precipitable water vapor (PWV) data during the tropical warm pool international cloud experiment (TWP-ICE) period of January 20 to February 15, 2006 at Darwin, Australia. The trigger is determined by an exponential cumulative distribution function, the time step size in the SDE simulation, and a random precipitation indicator uniformly distributed over [0, 1]. Compared with the observed data, the simulations have similar means, extremes, skewness, kurtosis, and overall shapes of probability distribution, and are temporally well synchronized for increasing and decreasing, but have about 20% lower standard deviation. Based on a 1000-day run, the correlations between the model data and the observations in TWP-ICE period were computed in a moving time window of 25 days and show quasi-periodic variations between (−0.675, 0.697). This shows that the results are robust for the stochastic model simulation of the observed PWV data, whose fractal dimension is 1.9, while the dimension of the simulated data is also about 1.9. This agreement and numerous sensitivity experiments form a test on the feasibility of using an SDE model to simulate precipitation processes in more complex climate models.

Lipps, FB, Somervil.Rc.  1971.  Dynamics of Variable Wavelength in Finite-Amplitude Benard Convection. Physics of Fluids. 14:759-&.   10.1063/1.1693502   AbstractWebsite

The finite‐amplitude Bénard convection problem is investigated by numerical integration of the rigid‐boundary Boussinesq equations in two and three space dimensions. Solutions are obtained for a wide range of Prandtl numbers and at moderate Rayleigh numbers for which the flow is observed to approach a two‐dimensional steady state. Detailed quantitative comparisons are made with experimental data in an effort to explain the observed increase of cell wavelength with Rayleigh number and to determine the effect of changing cell size on the heat transport. The three‐dimensional model shows good evidence of being able to yield realistic values of the cell wavelength, while the two‐dimensional models yield wavelengths that are much too short. These results strongly suggest that the increase in wavelength is determined by a three‐dimensional transient process, while the convection tends to a two‐dimensional steady state. The increase in cell size is shown to be responsible for a substantial part of the discrepancy between previous theoretical‐numerical and experimental determinations of Nusselt number. It also provides a plausible explanation for the experimentally observed dependence of heat transport on Prandtl number.

Lubin, D, Chen B, Bromwich DH, Somerville RCJ, Lee WH, Hines KM.  1998.  The impact of Antarctic cloud radiative properties on a GCM climate simulation. Journal of Climate. 11:447-462.   10.1175/1520-0442(1998)011<0447:tioacr>2.0.co;2   AbstractWebsite

A sensitivity study to evaluate the impact upon regional and hemispheric climate caused by changing the optical properties of clouds over the Antarctic continent is conducted with the NCAR Community Model version 2 (CCM2). Sensitivity runs are performed in which radiation interacts with ice clouds with particle sizes of 10 and 40 mu m rather than with the standard 10-mu m water clouds. The experiments are carried out for perpetual January conditions with the diurnal cycle considered. The effects of these cloud changes on the Antarctic radiation budget are examined by considering cloud forcing at the top of the atmosphere and net radiation at the surface. Changes of the cloud radiative properties to those of 10-mu m ice clouds over Antarctica have significant Impacts on regional climate: temperature increases throughout the Antarctic troposphere by 1 degrees-2 degrees C and total cloud fraction over Antarctica is smaller than that of the control at low levels but is larger than that of the control in the mid- to upper troposphere. As a result of Antarctic warming and changes in the north-south temperature gradient, the drainage flows at the surface as well as the meridional mass circulation are weakened. Similarly, the circumpolar trough weakens significantly by 4-8 hPa and moves northward by about 4 degrees-5 degrees latitude. This regional mass field adjustment halves the strength of the simulated surface westerly winds. As a result of indirect thermodynamic and dynamic effects, significant changes are observed in the zonal mean circulation and eddies in the middle latitudes. In fact, the simulated impacts of the Antarctic cloud radiative alteration are not confined to the Southern Hemisphere. The meridional mean mass flux, zonal wind, and latent heat release exhibit statistically significant changes in the Tropics and even extratropics of the Northern Hemisphere. The simulation with radiative properties of 40-mu m ice clouds produces colder surface temperatures over Antarctica by up to 3 degrees C compared to the control. Otherwise, the results of the 40-mu m ice cloud simulation are similar to those of the 10-mu m ice cloud simulation.