Publications

Export 6 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q [R] S T U V W X Y Z   [Show ALL]
R
Lane, DE, Goris K, Somerville RCJ.  2002.  Radiative transfer through broken clouds: Observations and model validation. Journal of Climate. 15:2921-2933.   10.1175/1520-0442(2002)015<2921:rttbco>2.0.co;2   AbstractWebsite

Stochastic radiative transfer is investigated as a method of improving shortwave cloud-radiation parameterizations by incorporating the effects of statistically determined cloud-size and cloud-spacing distributions. Ground-based observations from 16 days at the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains (SGP) site are used to derive a statistical description of scattered clouds. The data are ingested into a stochastic, shortwave radiative transfer model. The typical cloud-base height of the most prevalent cloud type, fair-weather cumulus, is 1100 m. Low cloud-fraction conditions are common, with observed cloud liquid water paths between 20 and 80 g m(-2). Cloud-fraction amounts calculated using ceilometer data compare reasonably well with those reported in weather logs. The frequency distribution of cloud size can be described by a decaying exponential: the number of clouds decreases significantly with increasing cloud size. The minimum detectable cloud size is 200 m and the largest observed cloud is approximately 4 km. Using both a stochastic model and a plane-parallel model, the predicted radiation fields are compared and evaluated against an independent observational dataset. The stochastic model is sensitive to input cloud fraction and cloud field geometry. This model performs poorly when clouds are present in adjacent model layers due to random overlapping of the clouds. Typically, the models agree within 30 W m(-2) for downwelling shortwave radiation at the surface. Improvement in the observations used to calculate optical depth will be necessary to realize fully the potential of the stochastic technique.

Rahmstorf, S, Cazenave A, Church JA, Hansen JE, Keeling RF, Parker DE, Somerville RCJ.  2007.  Recent climate observations compared to projections. Science. 316:709-709.   10.1126/science.1136843   AbstractWebsite

We present recent observed climate trends for carbon dioxide concentration, global mean air temperature, and global sea level, and we compare these trends to previous model projections as summarized in the 2001 assessment report of the Intergovernmental Panel on Climate Change (IPCC). The IPCC scenarios and projections start in the year 1990, which is also the base year of the Kyoto protocol, in which almost all industrialized nations accepted a binding commitment to reduce their greenhouse gas emissions. The data available for the period since 1990 raise concerns that the climate system, in particular sea level, may be responding more quickly to climate change than our current generation of models indicates.

Chertock, B, Iacobellis S, Somerville C.  1987.  Remote sensing studies of oceanic cloud-radiation feedbacks. Atmospheric radiation progress and prospects (Proceedings of the Beijing International Radiation Symposium, August 26-30, 1986). ( Liou K, Chou H, Eds.).:508-514., Beijing, China: Science Press and American Meteorological Society Abstract
n/a
Kooperman, GJ, Pritchard MS, Somerville RCJ.  2014.  The response of US summer rainfall to quadrupled CO2 climate change in conventional and superparameterized versions of the NCAR community atmosphere model. Journal of Advances in Modeling Earth Systems.   10.1002/2014MS000306   Abstract

Observations and regional climate modeling (RCM) studies demonstrate that global climate models (GCMs) are unreliable for predicting changes in extreme precipitation. Yet RCM climate change simulations are subject to boundary conditions provided by GCMs and do not interact with large-scale dynamical feedbacks that may be critical to the overall regional response. Limitations of both global and regional modeling approaches contribute significant uncertainty to future rainfall projections. Progress requires a modeling framework capable of capturing the observed regional-scale variability of rainfall intensity without sacrificing planetary scales. Here the United States summer rainfall response to quadrupled CO2 climate change is investigated using conventional (CAM) and superparameterized (SPCAM) versions of the NCAR Community Atmosphere Model. The superparameterization approach, in which cloud-resolving model arrays are embedded in GCM grid columns, improves rainfall statistics and convective variability in global simulations. A set of 5 year time-slice simulations, with prescribed sea surface temperature and sea ice boundary conditions harvested from preindustrial and abrupt four times CO2 coupled Community Earth System Model (CESM/CAM) simulations, are compared for CAM and SPCAM. The two models produce very different changes in mean precipitation patterns, which develop from differences in large-scale circulation anomalies associated with the planetary-scale response to warming. CAM shows a small decrease in overall rainfall intensity, with an increased contribution from the weaker parameterized convection and a decrease from large-scale precipitation. SPCAM has the opposite response, a significant shift in rainfall occurrence toward higher precipitation rates including more intense propagating Central United States mesoscale convective systems in a four times CO2 climate.

Kooperman, GJ, Pritchard MS, Somerville RCJ.  2013.  Robustness and sensitivities of central US summer convection in the super-parameterized CAM: Multi-model intercomparison with a new regional EOF index. Geophysical Research Letters. 40:3287-3291.   10.1002/grl.50597   AbstractWebsite

Mesoscale convective systems (MCSs) can bring up to 60% of summer rainfall to the central United States but are not simulated by most global climate models. In this study, a new empirical orthogonal function based index is developed to isolate the MCS activity, similar to that developed by Wheeler and Hendon (2004) for the Madden-Julian Oscillation. The index is applied to compactly compare three conventional- and super-parameterized (SP) versions (3.0, 3.5, and 5.0) of the National Center for Atmospheric Research Community Atmosphere Model (CAM). Results show that nocturnal, eastward propagating convection is a robust effect of super-parameterization but is sensitive to its specific implementation. MCS composites based on the index show that in SP-CAM3.5, convective MCS anomalies are unrealistically large scale and concentrated, while surface precipitation is too weak. These aspects of the MCS signal are improved in the latest version (SP-CAM5.0), which uses high-order microphysics.

Willis, GE, Deardorff JW, Somerville RCJ.  1972.  Roll-diameter dependence in Rayleigh convection and its effect upon the heat flux. Journal of Fluid Mechanics. 54:351-367.   10.1017/S0022112072000722   Abstract

The average roll diameter in Rayleigh convection for 2000 < R < 31000, where R is the Rayleigh number, has been measured from photographs of three convecting fluids: air, water and a silicone oil with a Prandtl number σ of 450. For air the average dimensionless roll diameter was found to depend uniquely upon R and to increase especially rapidly in the range 2000 < R < 8000. The fluids of larger σ exhibited strong hysteresis but also had average roll diameters tending to increase with R. The increase in average roll diameter with R tended to decrease with σ. Through use of two-dimensional numerical integrations for the case of air it was found that the increase in average roll diameter with R provides an explanation for the usual discrepancy in heat flux observed between experiment and two-dimensional numerical calculations which prescribe a fixed wavelength.