Publications

Export 7 results:
Sort by: Author Title Type [ Year  (Desc)]
2016
Yang, Y, Russell LM, Xu L, Lou SJ, Lamjiri MA, Somerville RCJ, Miller AJ, Cayan DR, DeFlorio MJ, Ghan SJ, Liu Y, Singh B, Wang HL, Yoon JH, Rasch PJ.  2016.  Impacts of ENSO events on cloud radiative effects in preindustrial conditions: Changes in cloud fraction and their dependence on interactive aerosol emissions and concentrations. Journal of Geophysical Research-Atmospheres. 121:6321-6335.   10.1002/2015jd024503   AbstractWebsite

We use three 150 year preindustrial simulations of the Community Earth System Model to quantify the impacts of El Nino-Southern Oscillation (ENSO) events on shortwave and longwave cloud radiative effects (CRESW and CRELW). Compared to recent observations from the Clouds and the Earth's Radiant Energy System data set, the model simulation successfully reproduces larger variations of CRESW and CRELW over the tropics. The ENSO cycle is found to dominate interannual variations of cloud radiative effects. Simulated cooling (warming) effects from CRESW (CRELW) are strongest over the tropical western and central Pacific Ocean during warm ENSO events, with the largest difference between 20 and 60 W m(-2), with weaker effects of 10-40 W m(-2) over Indonesian regions and the subtropical Pacific Ocean. Sensitivity tests show that variations of cloud radiative effects are mainly driven by ENSO-related changes in cloud fraction. The variations in midlevel and high cloud fractions each account for approximately 20-50% of the interannual variations of CRESW over the tropics and almost all of the variations of CRELW between 60 degrees S and 60 degrees N. The variation of low cloud fraction contributes to most of the variations of CRESW over the midlatitude oceans. Variations in natural aerosol concentrations explained 10-30% of the variations of both CRESW and CRELW over the tropical Pacific, Indonesian regions, and the tropical Indian Ocean. Changes in natural aerosol emissions and concentrations enhance 3-5% and 1-3% of the variations of cloud radiative effects averaged over the tropics.

2014
DeFlorio, MJ, Ghan SJ, Singh B, Miller AJ, Cayan DR, Russell LM, Somerville RCJ.  2014.  Semidirect dynamical and radiative effect of North African dust transport on lower tropospheric clouds over the subtropical North Atlantic in CESM 1.0. Journal of Geophysical Research: Atmospheres. 119:2013JD020997.   10.1002/2013JD020997   AbstractWebsite

This study uses a century length preindustrial climate simulation by the Community Earth System Model (CESM 1.0) to explore statistical relationships between dust, clouds, and atmospheric circulation and to suggest a semidirect dynamical mechanism linking subtropical North Atlantic lower tropospheric cloud cover with North African dust transport. The length of the run allows us to account for interannual variability of North African dust emissions and transport in the model. CESM's monthly climatology of both aerosol optical depth and surface dust concentration at Cape Verde and Barbados, respectively, agree well with available observations, as does the aerosol size distribution at Cape Verde. In addition, CESM shows strong seasonal cycles of dust burden and lower tropospheric cloud fraction, with maximum values occurring during boreal summer, when a strong correlation between these two variables exists over the subtropical North Atlantic. Calculations of Estimated Inversion Strength (EIS) and composites of EIS on high and low downstream North African dust months during boreal summer reveal that dust is likely increasing inversion strength over this region due to both solar absorption and reflection. We find no evidence for a microphysical link between dust and lower tropospheric clouds in this region. These results yield new insight over an extensive period of time into the complex relationship between North African dust and North Atlantic lower tropospheric clouds, which has previously been hindered by spatiotemporal constraints of observations. Our findings lay a framework for future analyses using different climate models and submonthly data over regions with different underlying dynamics.

2013
Xu, L, Russell LM, Somerville RCJ, Quinn PK.  2013.  Frost flower aerosol effects on Arctic wintertime longwave cloud radiative forcing. Journal of Geophysical Research-Atmospheres. 118:13282-13291.   10.1002/2013jd020554   Abstract

Frost flowers are clusters of highly saline ice crystals growing on newly formed sea ice or frozen lakes. Based on observations of particles derived from frost flowers in the Arctic, we formulate an observation-based parameterization of salt aerosol source function from frost flowers. The particle flux from frost flowers in winter has the order of 10(6)m(-2)s(-1) at the wind speed of 10ms(-1), but the source flux is highly localized to new sea ice regions and strongly dependent on wind speed. We have implemented this parameterization into the regional Weather Research and Forecasting model with Chemistry initialized for two wintertime scenarios. The addition of sea salt aerosol emissions from frost flowers increases averaged sea salt aerosol mass and number concentration and subsequent cloud droplet number. This change of cloud droplet number concentration increases downward longwave cloud radiative forcing through enhanced cloud optical depth and emissivity. The magnitude of this forcing of sea salt aerosols from frost flowers on clouds and radiation, however, contributes negligibly to surface warming in Barrow, Alaska, in the wintertime scenarios studied here.

2006
Iacobellis, SF, Somerville RCJ.  2006.  Evaluating parameterizations of the autoconversion process using a single-column model and Atmospheric Radiation Measurement Program measurements. Journal of Geophysical Research-Atmospheres. 111   10.1029/2005jd006296   AbstractWebsite

A single-column model is used to evaluate the performance of two types of autoconversion parameterizations. The model results are compared to data collected at the Atmospheric Radiation Measurement Program's Southern U. S. Great Plains site. The model is run over a period covering 2 years (2000-2001), and the results are analyzed for time periods varying from hourly to seasonal. During a relatively short 27-hour period during March 2000 characterized primarily by shallow frontal clouds, modeled values of cloud liquid water were better simulated using a Manton-Cotton-type autoconversion parameterization. However, over longer timescales representing a multitude of different cloud types and meteorological conditions, a Sundqvist-type parameterization produced better results. Analysis of the model results indicates that the Manton-Cotton-type parameterization does better during periods when shallow clouds are present without any overlying clouds, while the Sundqvist-type parameterization is preferred during periods when high and low clouds coexist. A possible explanation is that precipitation from high clouds may not be represented well by the SCM, thus affecting the precipitation formation rates in any lower clouds. Sensitivity tests using the Manton-Cotton parameterization indicate that the autoconversion rate is sensitive to the specification of the cloud droplet number concentration (N-c). The single-column model, as well as many general circulation models, specify N-c as a constant value. However, limited in situ measurements suggest that N-c varies significantly in time. The mean modeled top-of-atmosphere cloud radiative forcing during the 2-year period 2000-2001 differed by 3 W m(-2) as the cloud droplet concentration was varied between minimum and maximum values suggested by the in situ measurements. These results imply that model-produced hydrological cycle and cloud-radiation interactions could be better modeled using an accurate time-dependent measure of the cloud droplet concentration.

2004
Lane-Veron, DE, Somerville RCJ.  2004.  Stochastic theory of radiative transfer through generalized cloud fields. Journal of Geophysical Research-Atmospheres. 109   10.1029/2004jd004524   AbstractWebsite

[1] We present a coherent treatment, based on linear kinetic theory, of stochastic radiative transfer in an atmosphere containing clouds. A brief summary of statistical cloud radiation models is included. We explore the sensitivities inherent in the stochastic approach by using a well-known plane-parallel model developed by Fouquart and Bonnel together with our own stochastic model which generalizes earlier work of F. Malvagi, R. N. Byrne, G. C. Pomraning, and R. C. J. Somerville. In overcast conditions, in comparison to the plane parallel model, the stochastic model underestimates transmittance at small optical depths (< 7) and overestimates transmittance at large optical depths. The stochastic model is strongly sensitive to cloud optical properties, including cloud water content and cloud droplet effective radius. The extension of the stochastic approach to an atmospheric general circulation model parameterization appears to be most appropriate for cloud fraction ranging from 25 to 70%. We conclude that stochastic theory holds substantial promise as a modeling approach for calculating shortwave radiative transfer through partially cloudy fields. Unlike cloud-resolving models and Monte Carlo cloud models, stochastic cloud models do not depend on specific realizations of the cloud field. Instead, they calculate the transfer of radiation through a cloudy atmosphere whose properties are known statistically in the form of probability density functions characterizing cloud geometry and cloud optical properties. The advantage of the stochastic approach is its theoretical generality and its potential for representing a complex cloud field realistically at modest computational cost.

1999
Somerville, RCJ, Iacobellis SF.  1999.  Single-column models, ARM observations, and GCM cloud-radiation schemes. Physics and Chemistry of the Earth Part B-Hydrology Oceans and Atmosphere. 24:733-740.   10.1016/s1464-1909(99)00074-x   AbstractWebsite

Among the most serious sources of uncertainty in current general circulation models (GCMs) is the treatment of clouds and cloud-radiation interactions. We have used a single-column model (SCM) diagnostically to evaluate parameterizations against observations from the Atmospheric Radiation Measurement (ARM) Program. We find that schemes with explicit cloud water budgets and interactive radiative properties are potentially capable of matching observational data closely. In our SCM, using an interactive cloud droplet radius decreases the cloud optical thickness and cloud infrared emittance of high clouds, which acts to increase the downwelling surface shortwave flux and the outgoing longwave radiation. However, it is difficult to evaluate the realism of the vertical distribution of model-produced cloud extinction, cloud emittance, cloud liquid water content and effective cloud droplet radius until high-quality observations of these quantities become more widely available. We also find that in the SCM, cloud parameterizations often underestimate the observed cloud amount, and that ARM observations indicate the presence of clouds while the corresponding maximum relative humidity is less than 80%. This implies that the underlying concept of a critical gridpoint relative humidity of about 80% for cloud formation, as used in many GCM cloud parameterizations, may need to be reexamined. (C) 1999 Elsevier Science Ltd. All rights reserved.

1993
Malvagi, F, Byrne RN, Pomraning GC, Somerville RCJ.  1993.  Stochastic Radiative Transfer in a Partially Cloudy Atmosphere. Journal of the Atmospheric Sciences. 50:2146-2158.   10.1175/1520-0469(1993)050<2146:srtipc>2.0.co;2   AbstractWebsite

A radiation treatment of the broken-cloud problem is presented, based upon various stochastic models of the equation of radiative transfer that consider the clouds and clear sky as a two-component random mixture. These models, recently introduced in the kinetic theory literature, allow for non-Markovian statistics as well as both vertical and lateral variations in the cloudiness. Numerical results are given that compare different models of stochastic radiative transport and that point out the importance of treating the broken-cloud problem as a stochastic process. It is also shown that an integral Markovian model proposed within the atmospheric radiation community by Titov is entirely equivalent to a special case of a simple low-order differential model. The differential form of Titov's result should be easier than the integral form to implement in any general circulation model.