Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Kooperman, GJ, Pritchard MS, Somerville RCJ.  2014.  The response of US summer rainfall to quadrupled CO2 climate change in conventional and superparameterized versions of the NCAR community atmosphere model. Journal of Advances in Modeling Earth Systems.   10.1002/2014MS000306   Abstract

Observations and regional climate modeling (RCM) studies demonstrate that global climate models (GCMs) are unreliable for predicting changes in extreme precipitation. Yet RCM climate change simulations are subject to boundary conditions provided by GCMs and do not interact with large-scale dynamical feedbacks that may be critical to the overall regional response. Limitations of both global and regional modeling approaches contribute significant uncertainty to future rainfall projections. Progress requires a modeling framework capable of capturing the observed regional-scale variability of rainfall intensity without sacrificing planetary scales. Here the United States summer rainfall response to quadrupled CO2 climate change is investigated using conventional (CAM) and superparameterized (SPCAM) versions of the NCAR Community Atmosphere Model. The superparameterization approach, in which cloud-resolving model arrays are embedded in GCM grid columns, improves rainfall statistics and convective variability in global simulations. A set of 5 year time-slice simulations, with prescribed sea surface temperature and sea ice boundary conditions harvested from preindustrial and abrupt four times CO2 coupled Community Earth System Model (CESM/CAM) simulations, are compared for CAM and SPCAM. The two models produce very different changes in mean precipitation patterns, which develop from differences in large-scale circulation anomalies associated with the planetary-scale response to warming. CAM shows a small decrease in overall rainfall intensity, with an increased contribution from the weaker parameterized convection and a decrease from large-scale precipitation. SPCAM has the opposite response, a significant shift in rainfall occurrence toward higher precipitation rates including more intense propagating Central United States mesoscale convective systems in a four times CO2 climate.

Zhao, Z, Kooperman GJ, Pritchard MS, Russell LM, Somerville RCJ.  2014.  Investigating impacts of forest fires in Alaska and western Canada on regional weather over the northeastern United States using CAM5 global simulations to constrain transport to a WRF-Chem regional domain. Journal of Geophysical Research: Atmospheres. 119:2013JD020973.   10.1002/2013JD020973   AbstractWebsite

An aerosol-enabled globally driven regional modeling system has been developed by coupling the National Center for Atmospheric Research's Community Atmosphere Model version 5 (CAM5) with the Weather Research and Forecasting model with chemistry (WRF-Chem). In this modeling system, aerosol-enabled CAM5, a state-of-the-art global climate model is downscaled to provide coherent meteorological and chemical boundary conditions for regional WRF-Chem simulations. Aerosol particle emissions originating outside the WRF-Chem domain can be a potentially important nonlocal aerosol source. As a test case, the potential impacts of nonlocal forest fire aerosols on regional precipitation and radiation were investigated over the northeastern United States during the summer of 2004. During this period, forest fires in Alaska and western Canada lofted aerosol particles into the midtroposphere, which were advected across the United States. WRF-Chem simulations that included nonlocal biomass burning aerosols had domain-mean aerosol optical depths that were nearly three times higher than those without, which reduced peak downwelling domain-mean shortwave radiation at the surface by ~25 W m−2. In this classic twin experiment design, adding nonlocal fire plume led to near-surface cooling and changes in cloud vertical distribution, while variations in domain-mean cloud liquid water path were negligible. The higher aerosol concentrations in the simulation with the fire plume resulted in a ~10% reduction in domain-mean precipitation coincident with an ~8% decrease in domain-mean CAPE. A suite of simulations was also conducted to explore sensitivities of meteorological feedbacks to the ratio of black carbon to total plume aerosols, as well as to overall plume concentrations. Results from this ensemble revealed that plume-induced near-surface cooling and CAPE reduction occur in a wide range of conditions. The response of moist convection was very complex because of strong thermodynamic internal variability.