Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Asc)]
2014
DeFlorio, MJ, Ghan SJ, Singh B, Miller AJ, Cayan DR, Russell LM, Somerville RCJ.  2014.  Semidirect dynamical and radiative effect of North African dust transport on lower tropospheric clouds over the subtropical North Atlantic in CESM 1.0. Journal of Geophysical Research: Atmospheres. 119:2013JD020997.   10.1002/2013JD020997   AbstractWebsite

This study uses a century length preindustrial climate simulation by the Community Earth System Model (CESM 1.0) to explore statistical relationships between dust, clouds, and atmospheric circulation and to suggest a semidirect dynamical mechanism linking subtropical North Atlantic lower tropospheric cloud cover with North African dust transport. The length of the run allows us to account for interannual variability of North African dust emissions and transport in the model. CESM's monthly climatology of both aerosol optical depth and surface dust concentration at Cape Verde and Barbados, respectively, agree well with available observations, as does the aerosol size distribution at Cape Verde. In addition, CESM shows strong seasonal cycles of dust burden and lower tropospheric cloud fraction, with maximum values occurring during boreal summer, when a strong correlation between these two variables exists over the subtropical North Atlantic. Calculations of Estimated Inversion Strength (EIS) and composites of EIS on high and low downstream North African dust months during boreal summer reveal that dust is likely increasing inversion strength over this region due to both solar absorption and reflection. We find no evidence for a microphysical link between dust and lower tropospheric clouds in this region. These results yield new insight over an extensive period of time into the complex relationship between North African dust and North Atlantic lower tropospheric clouds, which has previously been hindered by spatiotemporal constraints of observations. Our findings lay a framework for future analyses using different climate models and submonthly data over regions with different underlying dynamics.

Kooperman, GJ, Pritchard MS, Somerville RCJ.  2014.  The response of US summer rainfall to quadrupled CO2 climate change in conventional and superparameterized versions of the NCAR community atmosphere model. Journal of Advances in Modeling Earth Systems.   10.1002/2014MS000306   Abstract

Observations and regional climate modeling (RCM) studies demonstrate that global climate models (GCMs) are unreliable for predicting changes in extreme precipitation. Yet RCM climate change simulations are subject to boundary conditions provided by GCMs and do not interact with large-scale dynamical feedbacks that may be critical to the overall regional response. Limitations of both global and regional modeling approaches contribute significant uncertainty to future rainfall projections. Progress requires a modeling framework capable of capturing the observed regional-scale variability of rainfall intensity without sacrificing planetary scales. Here the United States summer rainfall response to quadrupled CO2 climate change is investigated using conventional (CAM) and superparameterized (SPCAM) versions of the NCAR Community Atmosphere Model. The superparameterization approach, in which cloud-resolving model arrays are embedded in GCM grid columns, improves rainfall statistics and convective variability in global simulations. A set of 5 year time-slice simulations, with prescribed sea surface temperature and sea ice boundary conditions harvested from preindustrial and abrupt four times CO2 coupled Community Earth System Model (CESM/CAM) simulations, are compared for CAM and SPCAM. The two models produce very different changes in mean precipitation patterns, which develop from differences in large-scale circulation anomalies associated with the planetary-scale response to warming. CAM shows a small decrease in overall rainfall intensity, with an increased contribution from the weaker parameterized convection and a decrease from large-scale precipitation. SPCAM has the opposite response, a significant shift in rainfall occurrence toward higher precipitation rates including more intense propagating Central United States mesoscale convective systems in a four times CO2 climate.