Export 5 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W [X] Y Z   [Show ALL]
Xie, SC, Xu KM, Cederwall RT, Bechtold P, Delgenio AD, Klein SA, Cripe DG, Ghan SJ, Gregory D, Iacobellis SF, Krueger SK, Lohmann U, Petch JC, Randall DA, Rotstayn LD, Somerville RCJ, Sud YC, Von Salzen K, Walker GK, Wolf A, Yio JJ, Zhang GJ, Zhang MG.  2002.  Intercomparison and evaluation of cumulus parametrizations under summertime midlatitude continental conditions. Quarterly Journal of the Royal Meteorological Society. 128:1095-1135.   10.1256/003590002320373229   AbstractWebsite

This study reports the Single-Column Model (SCM) part of the Atmospheric Radiation Measurement (ARM)/the Global Energy and Water Cycle Experiment (GEWEX) Cloud System Study (GCSS) joint SCM and Cloud-Resolving Model (CRM) Case 3 intercomparison study, with a focus on evaluation Of Cumulus parametrizations used in SCMs. Fifteen SCMs are evaluated under summertime midlatitude continental conditions using data collected at the ARM Southern Great Plains site during the summer 1997 Intensive Observing Period. Results from ten CRMs are also used to diagnose problems in the SCMs. It is shown that most SCMs can generally capture well the convective events that were well-developed within the SCM domain, while most of them have difficulties in simulating the occurrence of those convective events that only occurred within a small part of the domain. All models significantly underestimate the surface stratiform precipitation. A third of them produce large errors in surface precipitation and thermodynamic structures. Deficiencies in convective triggering mechanisms are thought to be one of the major reasons. Using a triggering mechanism that is based on the vertical integral of parcel buoyant energy without additional appropriate constraints results in overactive convection, which in turn leads to large systematic warm/dry biases in the troposphere. It is also shown that a non-penetrative convection scheme can underestimate the depth of instability for midlatitude convection, which leads to large systematic cold/moist biases in the troposphere. SCMs agree well quantitatively with CRMs in the updraught mass fluxes, while most models significantly underestimate the downdraught mass fluxes. Neglect of mesoscale updraught and downdraught mass fluxes in the SCMs contributes considerably to the discrepancies between the SCMs and the CRMs. In addition, uncertainties in the diagnosed mass fluxes in the CRMs and deficiencies with cumulus parametrizations are not negligible. Similar results are obtained in the sensitivity tests when different forcing approaches are used. Finally. sensitivity tests from an SCM indicate that its simulations can be greatly improved when its triggering mechanism and closure assumption are improved.

Xie, SC, Zhang MH, Branson M, Cederwall RT, Delgenio AD, Eitzen ZA, Ghan SJ, Iacobellis SF, Johnson KL, Khairoutdinov M, Klein SA, Krueger SK, Lin WY, Lohmann U, Miller MA, Randall DA, Somerville RCJ, Sud YC, Walker GK, Wolf A, Wu XQ, Xu KM, Yio JJ, Zhang G, Zhang JH.  2005.  Simulations of midlatitude frontal clouds by single-column and cloud-resolving models during the Atmospheric Radiation Measurement March 2000 cloud intensive operational period. Journal of Geophysical Research-Atmospheres. 110   10.1029/2004jd005119   AbstractWebsite

[1] This study quantitatively evaluates the overall performance of nine single-column models (SCMs) and four cloud-resolving models (CRMs) in simulating a strong midlatitude frontal cloud system taken from the spring 2000 Cloud Intensive Observational Period at the Atmospheric Radiation Measurement ( ARM) Southern Great Plains site. The evaluation data are an analysis product of constrained variational analysis of the ARM observations and the cloud data collected from the ARM ground active remote sensors (i.e., cloud radar, lidar, and laser ceilometers) and satellite retrievals. Both the selected SCMs and CRMs can typically capture the bulk characteristics of the frontal system and the frontal precipitation. However, there are significant differences in detailed structures of the frontal clouds. Both CRMs and SCMs overestimate high thin cirrus clouds before the main frontal passage. During the passage of a front with strong upward motion, CRMs underestimate middle and low clouds while SCMs overestimate clouds at the levels above 765 hPa. All CRMs and some SCMs also underestimated the middle clouds after the frontal passage. There are also large differences in the model simulations of cloud condensates owing to differences in parameterizations; however, the differences among intercompared models are smaller in the CRMs than the SCMs. In general, the CRM-simulated cloud water and ice are comparable with observations, while most SCMs underestimated cloud water. SCMs show huge biases varying from large overestimates to equally large underestimates of cloud ice. Many of these model biases could be traced to the lack of subgrid-scale dynamical structure in the applied forcing fields and the lack of organized mesoscale hydrometeor advections. Other potential reasons for these model errors are also discussed in the paper.

Xu, KM, Zhang MH, Eitzen MA, Ghan SJ, Klein SA, Wu XQ, Xie SC, Branson M, Delgenio AD, Iacobellis SF, Khairoutdinov M, Lin WY, Lohmann U, Randall DA, Somerville RCJ, Sud YC, Walker GK, Wolf A, Yio JJ, Zhang JH.  2005.  Modeling springtime shallow frontal clouds with cloud-resolving and single-column models. Journal of Geophysical Research-Atmospheres. 110   10.1029/2004jd005153   AbstractWebsite

This modeling study compares the performance of eight single-column models (SCMs) and four cloud-resolving models (CRMs) in simulating shallow frontal cloud systems observed during a short period of the March 2000 Atmospheric Radiation Measurement (ARM) intensive operational period. Except for the passage of a cold front at the beginning of this period, frontal cloud systems are under the influence of an upper tropospheric ridge and are driven by a persistent frontogenesis over the Southern Great Plains and moisture transport from the northwestern part of the Gulf of Mexico. This study emphasizes quantitative comparisons among the model simulations and with the ARM data, focusing on a 27-hour period when only shallow frontal clouds were observed. All CRMs and SCMs simulate clouds in the observed shallow cloud layer. Most SCMs also produce clouds in the middle and upper troposphere, while none of the CRMs produce any clouds there. One possible cause for this is the decoupling between cloud condensate and cloud fraction in nearly all SCM parameterizations. Another possible cause is the weak upper tropospheric subsidence that has been averaged over both descending and ascending regions. Significantly different cloud amounts and cloud microphysical properties are found in the model simulations. All CRMs and most SCMs underestimate shallow clouds in the lowest 125 hPa near the surface, but most SCMs overestimate the cloud amount above this layer. These results are related to the detailed formulations of cloud microphysical processes and fractional cloud parameterizations in the SCMs, and possibly to the dynamical framework and two-dimensional configuration of the CRMs. Although two of the CRMs with anelastic dynamical frameworks simulate the shallow frontal clouds much better than the SCMs, the CRMs do not necessarily perform much better than the SCMs for the entire period when deep and shallow frontal clouds are present.

Xu, L, Russell LM, Somerville RCJ, Quinn PK.  2013.  Frost flower aerosol effects on Arctic wintertime longwave cloud radiative forcing. Journal of Geophysical Research-Atmospheres. 118:13282-13291.   10.1002/2013jd020554   Abstract

Frost flowers are clusters of highly saline ice crystals growing on newly formed sea ice or frozen lakes. Based on observations of particles derived from frost flowers in the Arctic, we formulate an observation-based parameterization of salt aerosol source function from frost flowers. The particle flux from frost flowers in winter has the order of 10(6)m(-2)s(-1) at the wind speed of 10ms(-1), but the source flux is highly localized to new sea ice regions and strongly dependent on wind speed. We have implemented this parameterization into the regional Weather Research and Forecasting model with Chemistry initialized for two wintertime scenarios. The addition of sea salt aerosol emissions from frost flowers increases averaged sea salt aerosol mass and number concentration and subsequent cloud droplet number. This change of cloud droplet number concentration increases downward longwave cloud radiative forcing through enhanced cloud optical depth and emissivity. The magnitude of this forcing of sea salt aerosols from frost flowers on clouds and radiation, however, contributes negligibly to surface warming in Barrow, Alaska, in the wintertime scenarios studied here.

Xu, L, Pierce DW, Russell LM, Miller AJ, Somerville RCJ, Twohy CH, Ghan SJ, Singh B, Yoon J-H, Rasch PJ.  2015.  Interannual to decadal climate variability of sea salt aerosols in the coupled climate model CESM1.0. Journal of Geophysical Research: Atmospheres. :2014JD022888.   10.1002/2014JD022888   AbstractWebsite

This study examines multi-year climate variability associated with sea salt aerosols and their contribution to the variability of shortwave cloud forcing (SWCF) using a 150-year simulation for pre-industrial conditions of the Community Earth System Model version 1.0 (CESM1). The results suggest that changes in sea salt and related cloud and radiative properties on interannual timescales are dominated by the ENSO cycle. Sea salt variability on longer (interdecadal) timescales is associated with low-frequency variability in the Pacific Ocean similar to the interdecadal Pacific Oscillation (IPO), but does not show a statistically significant spectral peak. A multivariate regression suggests that sea salt aerosol variability may contribute to SWCF variability in the tropical Pacific, explaining up to 20-30% of the variance in that region. Elsewhere, there is only a small sea salt aerosol influence on SWCF through modifying cloud droplet number and liquid water path that contributes to the change of cloud effective radius and cloud optical depth (and hence cloud albedo), producing a multi-year aerosol-cloud-wind interaction.