Bénard convection in a rotating fluid

Citation:
Somerville, RCJ.  1971.  Bénard convection in a rotating fluid. Geophysical Fluid Dynamics. 2:247-262.: Taylor & Francis

Date Published:

1971/01/01

Abstract:

Abstract The steady nonlinear regime of Bénard convection in a uniformly rotating fluid is treated using a two-dimensional primitive-equation numerical model with rigid boundaries. Quantitative comparisons with laboratory heat transport data for water are made in the parameter ranges for which the experimental flows are approximately two-dimensional and steady. When an experimentally realistic spatial periodicity is imposed upon the numerical solution, the model simulates the experimental determinations of Nusselt number fairly accurately. In particular, it predicts the observed non-monotonic dependence on Taylor number. When spatial periodicities corresponding to those of the linear stability problem are specified, however, the accuracy of the simulation is less and the Taylor number dependence is monotonic.The steady nonlinear regime of Bénard convection in a uniformly rotating fluid is treated using a two-dimensional primitive-equation numerical model with rigid boundaries. Quantitative comparisons with laboratory heat transport data for water are made in the parameter ranges for which the experimental flows are approximately two-dimensional and steady. When an experimentally realistic spatial periodicity is imposed upon the numerical solution, the model simulates the experimental determinations of Nusselt number fairly accurately. In particular, it predicts the observed non-monotonic dependence on Taylor number. When spatial periodicities corresponding to those of the linear stability problem are specified, however, the accuracy of the simulation is less and the Taylor number dependence is monotonic.

Notes:

n/a

Website

DOI:

10.1080/03091927108236061