The optical and biological properties of glacial meltwater in an Antarctic fjord

Pan, JB, Vernet M, Reynolds RA, Mitchell GB.  2019.  The optical and biological properties of glacial meltwater in an Antarctic fjord. PLOS ONE. 14:1-30.: Public Library of Science

Date Published:



As the Western Antarctic Peninsula (WAP) region responds to a warmer climate, the impacts of glacial meltwater on the Southern Ocean are expected to intensify. The Antarctic Peninsula fjord system offers an ideal system to understand meltwater’s properties, providing an extreme in the meltwater’s spatial gradient from the glacio-marine boundary to the WAP continental shelf. Glacial meltwater discharge in Arctic and Greenland fjords is typically characterized as relatively lower temperature, fresh and with high turbidity. During two cruises conducted in December 2015 and April 2016 in Andvord Bay, we found a water lens of low salinity and low temperature along the glacio-marine interface. Oxygen isotope ratios identified this water lens as a mixture of glacial ice and deep water in Gerlache Strait suggesting this is glacial meltwater. Conventional hydrographic measurements were combined with optical properties to effectively quantify its spatial extent. Fine suspended sediments associated with meltwater (nanoparticles of   5nm) had a significant impact on the underwater light field and enabled the detection of meltwater characteristics and spatial distribution. In this study, we illustrate that glacial meltwater in Andvord Bay alters the inherent and apparent optical properties of the water column, and develop statistical models to predict the meltwater content from hydrographic and optical measurements. The predicted meltwater fraction is in good agreement with in-situ values. These models offer a potential for remote sensing and high-resolution detection of glacial meltwater in Antarctic waters. Furthermore, the possible influence of meltwater on phytoplankton abundance in the surface is highlighted; a significant correlation is found between meltwater fraction and chlorophyll concentration.