Export 109 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Adachi, Y, Kawamura K, Armi L, Keeling RF.  2006.  Diffusive separation of the lower atmosphere. Science (Washington). 311:1429-1429.: American Association for the Advancement of Science, 1200 New York Avenue, NW Washington DC 20005 USA, [], [URL:]   10.1126/science.1121312   AbstractWebsite

The separation of atmospheric constituents by gravity has been proposed theoretically for almost two centuries. However, turbulent mixing has prevented the detection of this phenomenon in the lower atmosphere. By using precise measurements of the Ar/N2 ratio of air samples taken under strong nocturnal inversions, we have detected such separation in near-surface layers. The effect is shown to be consistent with combined influence of thermal and gravimetric separation, with the thermal contribution being more important.

Battle, M, Fletcher SEM, Bender ML, Keeling RF, Manning AC, Gruber N, Tans PP, Hendricks MB, Ho DT, Simonds C, Mika R, Paplawsky B.  2006.  Atmospheric potential oxygen: New observations and their implications for some atmospheric and oceanic models. Global Biogeochemical Cycles. 20   10.1029/2005gb002534   AbstractWebsite

[ 1] Measurements of atmospheric O(2)/N(2) ratios and CO(2) concentrations can be combined into a tracer known as atmospheric potential oxygen (APO approximate to O(2)/N(2) + CO(2)) that is conservative with respect to terrestrial biological activity. Consequently, APO reflects primarily ocean biogeochemistry and atmospheric circulation. Building on the work of Stephens et al. ( 1998), we present a set of APO observations for the years 1996 - 2003 with unprecedented spatial coverage. Combining data from the Princeton and Scripps air sampling programs, the data set includes new observations collected from ships in the low-latitude Pacific. The data show a smaller interhemispheric APO gradient than was observed in past studies, and different structure within the hemispheres. These differences appear to be due primarily to real changes in the APO field over time. The data also show a significant maximum in APO near the equator. Following the approach of Gruber et al. ( 2001), we compare these observations with predictions of APO generated from ocean O(2) and CO(2) flux fields and forward models of atmospheric transport. Our model predictions differ from those of earlier modeling studies, reflecting primarily the choice of atmospheric transport model (TM3 in this study). The model predictions show generally good agreement with the observations, matching the size of the interhemispheric gradient, the approximate amplitude and extent of the equatorial maximum, and the amplitude and phasing of the seasonal APO cycle at most stations. Room for improvement remains. The agreement in the interhemispheric gradient appears to be coincidental; over the last decade, the true APO gradient has evolved to a value that is consistent with our time-independent model. In addition, the equatorial maximum is somewhat more pronounced in the data than the model. This may be due to overly vigorous model transport, or insufficient spatial resolution in the air-sea fluxes used in our modeling effort. Finally, the seasonal cycles predicted by the model of atmospheric transport show evidence of an excessive seasonal rectifier in the Aleutian Islands and smaller problems elsewhere.

Battle, M, Bender M, Hendricks MB, Ho DT, Mika R, McKinley G, Fan SM, Blaine T, Keeling RF.  2003.  Measurements and models of the atmospheric Ar/N2 ratio. Geophysical Research Letters. 30   10.1029/2003gl017411   AbstractWebsite

[1] The Ar/N-2 ratio of air measured at 6 globally distributed sites shows annual cycles with amplitudes of 12 to 37 parts in 10(6). Summertime maxima reflect the atmospheric Ar enrichment driven by seasonal warming and degassing of the oceans. Paired models of air-sea heat fluxes and atmospheric tracer transport predict seasonal cycles in the Ar/N-2 ratio that agree with observations, within uncertainties.

Bender, ML, Battle M, Keeling RF.  1998.  The O2 balance of the atmosphere: A tool for studying the fate of fossil-fuel CO2. Annual Review of Energy and the Environment. 23:207-223.   10.1146/   AbstractWebsite

Carbon dioxide is a radiatively active gas whose atmospheric concentration increase is likely to affect Earth's climate. CO2 is added to the atmosphere by biomass burning and the combustion of fossil fuels. Some added CO2 remains in the atmosphere. However, substantial amounts are taken up by the oceans and land biosphere, attenuating the atmospheric increase. Atmospheric O-2 measurements provide one constraint for partitioning uptake rates between the ocean and the land biosphere. Here we review studies of atmospheric O-2 concentration variations and discuss their implications for CO2 uptake by the ocean and the land biosphere. We compare estimates of anthropogenic carbon fluxes from O-2 studies with estimates from other approaches and examine the contribution of natural ocean carbon fluxes to atmospheric O-2 variations.

Betts, RA, Jones CD, Knight JR, Keeling RF, Kennedy JJ, Wiltshire AJ, Andrew RM, Aragao L.  2018.  A successful prediction of the record CO2 rise associated with the 2015/2016 El Nino. Philosophical Transactions of the Royal Society B-Biological Sciences. 373   10.1098/rstb.2017.0301   AbstractWebsite

In early 2016, we predicted that the annual rise in carbon dioxide concentration at Mauna Loa would be the largest on record. Our forecast used a statistical relationship between observed and forecast sea surface temperatures in the Nino 3.4 region and the annual CO2 rise. Here, we provide a formal verification of that forecast. The observed rise of 3.4 ppm relative to 2015 was within the forecast range of 3.15 +/- 0.53 ppm, so the prediction was successful. A global terrestrial biosphere model supports the expectation that the El Nino weakened the tropical land carbon sink. We estimate that the El Nino contributed approximately 25% to the record rise in CO2, with 75% due to anthropogenic emissions. The 2015/2016 CO2 rise was greater than that following the previous large El Nino in 1997/1998, because anthropogenic emissions had increased. We had also correctly predicted that 2016 would be the first year with monthly mean CO2 above 400 ppm all year round. We now estimate that atmospheric CO2 at Mauna Loa would have remained above 400 ppm all year round in 2016 even if the El Nino had not occurred, contrary to our previous expectations based on a simple extrapolation of previous trends. This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Nino on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.

Blaine, TW, Keeling RF, Paplawsky WJ.  2006.  An improved inlet for precisely measuring the atmospheric Ar/N2 ratio. Atmospheric Chemistry and Physics. 6:1181-1184. AbstractWebsite

The atmospheric Ar/N-2 ratio is expected to be useful as a tracer of air-sea heat exchange, but this application has been hindered in part due to sampling artifacts. Here we show that the variability in delta(Ar/N-2) due to thermal fractionation at the inlet can be on the order of 40 - 80 per meg, and we introduce the use of an aspirated solar shield that successfully minimizes such fractionation. The data collected using this new inlet have a mean diurnal cycle of 1.0 per meg or less, suggesting that any residual thermal fractionation effect is reduced to this level.

Eddebbar, YA, Long MC, Resplandy L, Rödenbeck C, Rodgers KB, Manizza M, Keeling RF.  2017.  Impacts of ENSO on air-sea oxygen exchange: Observations and mechanisms. Global Biogeochemical Cycles.   10.1002/2017GB005630   Abstract

Models and observations of atmospheric potential oxygen (APO ≃ O2 + 1.1 * CO2) are used to investigate the influence of El Niño–Southern Oscillation (ENSO) on air-sea O2 exchange. An atmospheric transport inversion of APO data from the Scripps flask network shows significant interannual variability in tropical APO fluxes that is positively correlated with the Niño3.4 index, indicating anomalous ocean outgassing of APO during El Niño. Hindcast simulations of the Community Earth System Model (CESM) and the Institut Pierre-Simon Laplace model show similar APO sensitivity to ENSO, differing from the Geophysical Fluid Dynamics Laboratory model, which shows an opposite APO response. In all models, O2 accounts for most APO flux variations. Detailed analysis in CESM shows that the O2 response is driven primarily by ENSO modulation of the source and rate of equatorial upwelling, which moderates the intensity of O2 uptake due to vertical transport of low-O2 waters. These upwelling changes dominate over counteracting effects of biological productivity and thermally driven O2 exchange. During El Niño, shallower and weaker upwelling leads to anomalous O2 outgassing, whereas deeper and intensified upwelling during La Niña drives enhanced O2 uptake. This response is strongly localized along the central and eastern equatorial Pacific, leading to an equatorial zonal dipole in atmospheric anomalies of APO. This dipole is further intensified by ENSO-related changes in winds, reconciling apparently conflicting APO observations in the tropical Pacific. These findings suggest a substantial and complex response of the oceanic O2 cycle to climate variability that is significantly (>50%) underestimated in magnitude by ocean models.

Fischer, ML, Parazoo N, Brophy K, Cui XG, Jeong S, Liu JJ, Keeling R, Taylor TE, Gurney K, Oda T, Graven H.  2017.  Simulating estimation of California fossil fuel and biosphere carbon dioxide exchanges combining in situ tower and satellite column observations. Journal of Geophysical Research-Atmospheres. 122:3653-3671.   10.1002/2016jd025617   AbstractWebsite

We report simulation experiments estimating the uncertainties in California regional fossil fuel and biosphere CO2 exchanges that might be obtained by using an atmospheric inverse modeling system driven by the combination of ground-based observations of radiocarbon and total CO2, together with column-mean CO2 observations from NASA's Orbiting Carbon Observatory (OCO-2). The work includes an initial examination of statistical uncertainties in prior models for CO2 exchange, in radiocarbon-based fossil fuel CO2 measurements, in OCO-2 measurements, and in a regional atmospheric transport modeling system. Using these nominal assumptions for measurement and model uncertainties, we find that flask measurements of radiocarbon and total CO2 at 10 towers can be used to distinguish between different fossil fuel emission data products for major urban regions of California. We then show that the combination of flask and OCO-2 observations yields posterior uncertainties in monthly-mean fossil fuel emissions of similar to 5-10%, levels likely useful for policy relevant evaluation of bottom-up fossil fuel emission estimates. Similarly, we find that inversions yield uncertainties in monthly biosphere CO2 exchange of similar to 6%-12%, depending on season, providing useful information on net carbon uptake in California's forests and agricultural lands. Finally, initial sensitivity analysis suggests that obtaining the above results requires control of systematic biases below approximately 0.5ppm, placing requirements on accuracy of the atmospheric measurements, background subtraction, and atmospheric transport modeling.

Forkel, M, Carvalhais N, Rodenbeck C, Keeling R, Heimann M, Thonicke K, Zaehle S, Reichstein M.  2016.  Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science. 351:696-699.   10.1126/science.aac4971   AbstractWebsite

Atmospheric monitoring of high northern latitudes (above 40 degrees N) has shown an enhanced seasonal cycle of carbon dioxide (CO2) since the 1960s, but the underlying mechanisms are not yet fully understood. The much stronger increase in high latitudes relative to low ones suggests that northern ecosystems are experiencing large changes in vegetation and carbon cycle dynamics. We found that the latitudinal gradient of the increasing CO2 amplitude is mainly driven by positive trends in photosynthetic carbon uptake caused by recent climate change and mediated by changing vegetation cover in northern ecosystems. Our results underscore the importance of climate-vegetation-carbon cycle feedbacks at high latitudes; moreover, they indicate that in recent decades, photosynthetic carbon uptake has reacted much more strongly to warming than have carbon release processes.

Garcia, HE, Keeling RF.  2001.  On the global oxygen anomaly and air-sea flux. Journal of Geophysical Research-Oceans. 106:31155-31166.   10.1029/1999jc000200   AbstractWebsite

We present a new climatology of monthly air-sea oxygen fluxes throughout the ice-free surface global ocean. The climatology is based on weighted linear least squares regressions using heat flux monthly anomalies for spatial and temporal interpolation of historical O-2 data. The seasonal oceanic variations show that the tropical belt (20degreesS-20degreesN) is characterized by relatively small air-sea fluxes when compared to the middle to high latitudes (40degrees-70degrees). The largest and lowest seasonal fluxes occur during summer and winter in both hemispheres. By means of an atmospheric transport model we show that our climatology is in better agreement with the observed amplitude and phasing of the variations in atmospheric O-2/N-2 ratios because of seasonal air-sea exchanges at baseline stations in the Pacific Ocean than with previous air-sea O-2 climatologies. Our study indicates that the component of the air-sea O-2 flux that correlates with heat flux dominates the large-scale air-sea O-2 exchange on seasonal timescales. The contribution of each major oceanic basin to the atmospheric observations is described. The seasonal net thermal (SNOT) and biological (SNOB) outgassing components of the flux are examined in relation to latitudinal bands, basin-wide, and hemispheric contributions. The Southern Hemisphere's SNOB (similar to0.26 Pmol) and SNOT (similar to0.29 Pmol) values are larger than the Northern Hemisphere's SNOB (similar to0.15 Pmol) and SNOT (similar to0.16 Pmol) values (1 Pmol = 10(15) mol). We estimate a global extratropical carbon new production during the outgassing season of 3.7 Pg C (1 Pg = 10(15) g), lower than previous estimates with air-sea O-2 climatologies.

Graven, HD, Guilderson TP, Keeling RF.  2012.  Observations of radiocarbon in CO2 at seven global sampling sites in the Scripps flask network: Analysis of spatial gradients and seasonal cycles. Journal of Geophysical Research-Atmospheres. 117   10.1029/2011jd016535   AbstractWebsite

High precision measurements of Delta C-14 were conducted for monthly samples of CO2 from seven global stations over 2- to 16-year periods ending in 2007. Mean Delta C-14 over 2005-07 in the Northern Hemisphere was 5 parts per thousand lower than Delta C-14 in the Southern Hemisphere, similar to recent observations from I. Levin. This is a significant shift from 1988-89 when Delta C-14 in the Northern Hemisphere was slightly higher than the South. The influence of fossil fuel CO2 emission and transport was simulated for each of the observation sites by the TM3 atmospheric transport model and compared to other models that participated in the Transcom 3 Experiment. The simulated interhemispheric gradient caused by fossil fuel CO2 emissions was nearly the same in both 1988-89 and 2005-07, due to compensating effects from rising emissions and decreasing sensitivity of Delta C-14 to fossil fuel CO2. The observed 5 parts per thousand shift must therefore have been caused by non-fossil influences, most likely due to changes in the air-sea C-14 flux in the Southern Ocean. Seasonal cycles with higher Delta C-14 in summer or fall were evident at most stations, with largest amplitudes observed at Point Barrow (71 degrees N) and La Jolla (32 degrees N). Fossil fuel emissions do not account for the seasonal cycles of Delta C-14 in either hemisphere, indicating strong contributions from non-fossil influences, most likely from stratosphere-troposphere exchange.

Graven, HD, Guilderson TP, Keeling RF.  2007.  Methods for high-precision 14C AMS measurement of atmospheric CO2 at LLNL. Radiocarbon. 49:349-356. AbstractWebsite

Development of radiocarbon analysis with precision better than 2%omicron has the potential to expand the utility of (CO2)-C-14 measurements for carbon cycle investigations as atmospheric gradients currently approach the typical measurement precision of 2-5%omicron. The accelerator mass spectrometer at Lawrence Livermore National Laboratory (LLNL) produces high and stable beam currents that enable efficient acquisition times for large numbers of C-14 counts. One million C-14 atoms can be detected in approximately 25 min, suggesting that near 1%omicron counting precision is economically feasible at LLNL. The overall uncertainty in measured values is ultimately determined by the variation between measured ratios in several sputtering periods of the same sample and by the reproducibility of replicate samples. Experiments on the collection of 1 million counts on replicate samples of CO2 extracted from a whole air cylinder show a standard deviation of 1.7%omicron in 36 samples measured over several wheels. This precision may be limited by the reproducibility of oxalic acid I standard samples, which is considerably poorer. We outline the procedures for high-precision sample handling and analysis that have enabled reproducibility in the cylinder extraction samples at the <2%omicron level and describe future directions to continue increasing measurement precision at LLNL.

Graven, HD, Guilderson TP, Keeling RF.  2012.  Observations of radiocarbon in CO2 at La Jolla, California, USA 1992-2007: Analysis of the long-term trend. Journal of Geophysical Research-Atmospheres. 117   10.1029/2011jd016533   AbstractWebsite

High precision measurements of Delta C-14 were performed on CO2 sampled at La Jolla, California, USA over 1992-2007. A decreasing trend in Delta C-14 was observed, which averaged -5.5 parts per thousand yr(-1) yet showed significant interannual variability. Contributions to the trend in global tropospheric Delta C-14 by exchanges with the ocean, terrestrial biosphere and stratosphere, by natural and anthropogenic C-14 production and by C-14-free fossil fuel CO2 emissions were estimated using simple models. Dilution by fossil fuel emissions made the strongest contribution to the Delta C-14 trend while oceanic C-14 uptake showed the most significant change between 1992 and 2007, weakening by 70%. Relatively steady positive influences from the stratosphere, terrestrial biosphere and C-14 production moderated the decreasing trend. The most prominent excursion from the average trend occurred when Delta C-14 decreased rapidly in 2000. The rapid decline in Delta C-14 was concurrent with a rapid decline in atmospheric O-2, suggesting a possible cause may be the anomalous ventilation of deep C-14-poor water in the North Pacific Ocean. We additionally find the presence of a 28-month period of oscillation in the Delta C-14 record at La Jolla.

Graven, H, Allison CE, Etheridge DM, Hammer S, Keeling RF, Levin I, Meijer HAJ, Rubino M, Tans PP, Trudinger CM, Vaughn BH, White JWC.  2017.  Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6. Geoscientific Model Development. 10:4405-4417.   10.5194/gmd-10-4405-2017   AbstractWebsite

The isotopic composition of carbon (Delta C-14 and delta C-13) in atmospheric CO2 and in oceanic and terrestrial carbon reservoirs is influenced by anthropogenic emissions and by natural carbon exchanges, which can respond to and drive changes in climate. Simulations of C-14 and C-13 in the ocean and terrestrial components of Earth system models (ESMs) present opportunities for model evaluation and for investigation of carbon cycling, including anthropogenic CO2 emissions and uptake. The use of carbon isotopes in novel evaluation of the ESMs' component ocean and terrestrial biosphere models and in new analyses of historical changes may improve predictions of future changes in the carbon cycle and climate system. We compile existing data to produce records of Delta C-14 and delta C-13 in atmospheric CO2 for the historical period 1850-2015. The primary motivation for this compilation is to provide the atmospheric boundary condition for historical simulations in the Coupled Model Intercomparison Project 6 (CMIP6) for models simulating carbon isotopes in the ocean or terrestrial biosphere. The data may also be useful for other carbon cycle modelling activities.

Graven, HD, Keeling RF, Piper SC, Patra PK, Stephens BB, Wofsy SC, Welp LR, Sweeney C, Tans PP, Kelley JJ, Daube BC, Kort EA, Santoni GW, Bent JD.  2013.  Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science. 341:1085-1089.   10.1126/science.1239207   AbstractWebsite

Seasonal variations of atmospheric carbon dioxide (CO2) in the Northern Hemisphere have increased since the 1950s, but sparse observations have prevented a clear assessment of the patterns of long-term change and the underlying mechanisms. We compare recent aircraft-based observations of CO2 above the North Pacific and Arctic Oceans to earlier data from 1958 to 1961 and find that the seasonal amplitude at altitudes of 3 to 6 km increased by 50% for 45 degrees to 90 degrees N but by less than 25% for 10 degrees to 45 degrees N. An increase of 30 to 60% in the seasonal exchange of CO2 by northern extratropical land ecosystems, focused on boreal forests, is implicated, substantially more than simulated by current land ecosystem models. The observations appear to signal large ecological changes in northern forests and a major shift in the global carbon cycle.

Graven, H, Fischer ML, Lueker T, Jeong S, Guilderson TP, Keeling RF, Bambha R, Brophy K, Callahan W, Cui X, Frankenberg C, Gurney KR, LaFranchi BW, Lehman SJ, Michelsen H, Miller JB, Newman S, Paplawsky W, Parazoo NC, Sloop C, Walker SJ.  2018.  Assessing fossil fuel CO2 emissions in California using atmospheric observations and models. Environmental Research Letters. 13   10.1088/1748-9326/aabd43   AbstractWebsite

Analysis systems incorporating atmospheric observations could provide a powerful tool for validating fossil fuel CO2 (ffCO(2)) emissions reported for individual regions, provided that fossil fuel sources can be separated from other CO2 sources or sinks and atmospheric transport can be accurately accounted for. We quantified ffCO(2) by measuring radiocarbon (C-14) in CO2, an accurate fossil-carbon tracer, at nine observation sites in California for three months in 2014-15. There is strong agreement between the measurements and ffCO(2) simulated using a high-resolution atmospheric model and a spatiotemporally-resolved fossil fuel flux estimate. Inverse estimates of total in-state ffCO(2) emissions are consistent with the California Air Resources Board's reported ffCO(2) emissions, providing tentative validation of California's reported ffCO(2) emissions in 2014-15. Continuing this prototype analysis system could provide critical independent evaluation of reported ffCO(2) emissions and emissions reductions in California, and the system could be expanded to other, more data-poor regions.

Graven, HD, Stephens BB, Guilderson TP, Campos TL, Schimel DS, Campbell JE, Keeling RF.  2009.  Vertical profiles of biospheric and fossil fuel-derived CO2 and fossil fuel CO2: CO ratios from airborne measurements of Δ14C, CO2 and CO above Colorado, USA. Tellus Series B-Chemical and Physical Meteorology. 61:536-546.   10.1111/j.1600-0889.2009.00421.x   AbstractWebsite

Measurements of Delta C-14 in atmospheric CO2 are an effective method of separating CO2 additions from fossil fuel and biospheric sources or sinks of CO2. We illustrate this technique with vertical profiles of CO2 and Delta C-14 analysed in whole air flask samples collected above Colorado, USA in May and July 2004. Comparison of lower tropospheric composition to cleaner air at higher altitudes (>5 km) revealed considerable additions from respiration in the morning in both urban and rural locations. Afternoon concentrations were mainly governed by fossil fuel emissions and boundary layer depth, also showing net biospheric CO2 uptake in some cases. We estimate local industrial CO2: CO emission ratios using in situ measurements of CO concentration. Ratios are found to vary by 100% and average 57 mole CO2:1 mole CO, higher than expected from emissions inventories. Uncertainty in CO2 from different sources was +/- 1.1 to +/- 4.1 ppm for addition or uptake of -4.6 to 55.8 ppm, limited by Delta 14C measurement precision and uncertainty in background Delta C-14 and CO2 levels.

Graven, HD, Xu X, Guilderson TP, Keeling RF, Trumbore SE, Tyler S.  2012.  Comparison of independent delta(co2)-c-14 records at Point Barrow, Alaska. Radiocarbon. 55:1541-1545.   10.2458/azu_js_rc.55.16220   AbstractWebsite

Two independent programs have collected and analyzed atmospheric CO2 samples from Point Barrow, Alaska, for radiocarbon content (Delta C-14) over the period 2003-2007. In one program, flask collection, stable isotope analysis, and CO2 extraction are performed by the Scripps Institution of Oceanography's CO2 Program and CO2 is graphitized and measured by accelerator mass spectrometry (AMS) at Lawrence Livermore National Laboratory. In the other program, the University of California, Irvine, performs flask collection, sample preparation, and AMS. Over 22 common sample dates spanning 5 yr, differences in measured Delta C-14 are consistent with the reported uncertainties and there is no significant bias between the programs.

Hamme, RC, Keeling RF.  2008.  Ocean ventilation as a driver of interannual variability in atmospheric potential oxygen. Tellus Series B-Chemical and Physical Meteorology. 60:706-717.   10.1111/j.1600-0889.2008.00376.x   AbstractWebsite

We present observations of interannual variability on 2-5 yr timescales in atmospheric potential oxygen (APO approximate to O(2) + CO(2)) from the Scripps Institution of Oceanography global flask sampling network. Interannual variations in the tracer APO are expected to arise from air-sea fluxes alone, because APO is insensitive to exchanges with the terrestrial biosphere. These interannual variations are shown to be regionally coherent and robust to analytical artefacts. We focus on explaining a feature dominant in records from the Northern Hemisphere stations, marked by increasing APO in the late 1990s, followed by an abrupt drawdown in 2000-2001. The timing of the drawdown matches a renewal of deep convection in the North Atlantic, followed the next year by a severe winter in the western North Pacific that may have allowed ventilation of denser isopycnals than usual. We find a weak correlation between changes in the interhemispheric APO difference and El Nino indices, and the observations show no strong features of the 1997-98 El Nino. Comparisons with estimates of variations in ocean productivity and ocean heat content demonstrate that these processes are secondary influences at these timescales. We conclude that the evidence points to variability in ocean ventilation as the main driver of interannual variability in APO.

Jeong, SG, Newman S, Zhang JS, Andrews AE, Bianco L, Bagley J, Cui XG, Graven H, Kim J, Salameh P, LaFranchi BW, Priest C, Campos-Pineda M, Novakovskaia E, Sloop CD, Michelsen HA, Bambha RP, Weiss RF, Keeling R, Fischer ML.  2016.  Estimating methane emissions in California's urban and rural regions using multitower observations. Journal of Geophysical Research-Atmospheres. 121:13031-13049.   10.1002/2016jd025404   AbstractWebsite

We present an analysis of methane (CH4) emissions using atmospheric observations from 13 sites in California during June 2013 to May 2014. A hierarchical Bayesian inversion method is used to estimate CH4 emissions for spatial regions (0.3 degrees pixels for major regions) by comparing measured CH4 mixing ratios with transport model (Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian Transport) predictions based on seasonally varying California-specific CH4 prior emission models. The transport model is assessed using a combination of meteorological and carbon monoxide (CO) measurements coupled with the gridded California Air Resources Board (CARB) CO emission inventory. The hierarchical Bayesian inversion suggests that state annual anthropogenic CH4 emissions are 2.42 +/- 0.49 Tg CH4/yr (at 95% confidence), higher (1.2-1.8 times) than the current CARB inventory (1.64 Tg CH4/yr in 2013). It should be noted that undiagnosed sources of errors or uncaptured errors in the model-measurement mismatch covariance may increase these uncertainty bounds beyond that indicated here. The CH4 emissions from the Central Valley and urban regions (San Francisco Bay and South Coast Air Basins) account for similar to 58% and 26% of the total posterior emissions, respectively. This study suggests that the livestock sector is likely the major contributor to the state total CH4 emissions, in agreement with CARB's inventory. Attribution to source sectors for subregions of California using additional trace gas species would further improve the quantification of California's CH4 emissions and mitigation efforts toward the California Global Warming Solutions Act of 2006 (Assembly Bill 32).

Keeling, RF, Peng TH.  1995.  Transport of heat, CO2 and O2 by the Atlantic's thermohaline circulation. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences. 348:133-142.   10.1098/rstb.1995.0055   AbstractWebsite

We estimate transport of heat, CO2 and O-2 by the Atlantic's thermohaline circulation using an approach based on differences in the chemical and physical characteristics of North Atlantic Deep Water (NADW), Antarctic Intermediate Water (AAIW), and the northward return flow across the equator. The characteristics of the return-flow waters are constrained by imposing conservation of phosphate in the North Atlantic as a whole. Based on a total equatorial return flow of 13 x 10(6) m(3) s(-1), we find that the Atlantic north of the equator is a source of 7.7 +/- 1.4 x 10(14) W to the atmosphere, a sink of 0.51 +/- 0.21 x 10(14) mol of O-2, and preindustrially was a sink of 0.33 +/- 0.15 x 10(14) mol of CO2. Uptake of O-2 and CO2 by the North Atlantic is driven mainly by thermal, as opposed to biological processes.

Keeling, RF, Stephens BB, Najjar RG, Doney SC, Archer D, Heimann M.  1998.  Seasonal variations in the atmospheric O2/N2 ratio in relation to the kinetics of air-sea gas exchange. Global Biogeochemical Cycles. 12:141-163.   10.1029/97gb02339   AbstractWebsite

Observations of seasonal variations in the atmospheric O-2/N-2 ratio are reported at nine baseline sites in the northern and southern hemispheres. Concurrent CO2 measurements are used to correct for the effects of land biotic exchanges of O-2 on the O-2/N-2 cycles thus allowing the residual component of the cycles due to oceanic exchanges of O-2 and N-2 to be calculated. The residual oceanic cycles in the northern hemisphere are nearly diametrically out of phase with the cycles in the southern hemisphere. The maxima in both hemispheres occur in summer. In both hemispheres, the middle-latitude sea level stations show the cycles with largest amplitudes and earliest phasing. Somewhat smaller amplitudes are observed at the high-latitude stations, and much smaller amplitudes are observed at the tropical stations. A model for simulating the oceanic component of the atmospheric O-2/N-2 cycles is presented consisting of the TM2 atmospheric tracer transport model [Heimann, 1995] driven at the lower boundary by O-2 fluxes derived from observed O-2 saturation anomalies in surface waters and by N-2 fluxes derived from the net air-sea heat flux. The model is optimized to fit the observed atmospheric O-2/N-2 cycles by adjusting the air-sea gas-exchange velocity, which relates O-2 anomaly to O-2 flux. The optimum fit corresponds to spatially and temporally averaged exchange velocities of 24+/-6 cm/hr for the oceans north of 31 degrees N and 29+/-12 cm/hr for the oceans south of 31 degrees S. These velocities agree to within the uncertainties with the gas-exchange velocities expected from the Wanninkhof [1992] formulation of the air-sea gas-exchange velocity combined with European Centre for Medium-Range Weather Forecasts winds [Gibson et al., 1997] but are larger than the exchange velocities expected from the Liss and Merlivat [1986] relation using the same winds. The results imply that the gas-exchange velocity for O-2, like that of CO2, may be enhanced in the open ocean by processes that were not systematically accounted for in the experiments used to derive the Liss and Merlivat relation.

Keeling, RF, Graven HD, Welp LR, Resplandy L, Bi J, Piper SC, Sun Y, Bollenbacher A, Meijer HAJ.  2017.  Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis. Proceedings of the National Academy of Sciences of the United States of America. 114:10361-10366.   10.1073/pnas.1619240114   AbstractWebsite

A decrease in the C-13/C-12 ratio of atmospheric CO2 has been documented by direct observations since 1978 and from ice core measurements since the industrial revolution. This decrease, known as the C-13-Suess effect, is driven primarily by the input of fossil fuel-derived CO2 but is also sensitive to land and ocean carbon cycling and uptake. Using updated records, we show that no plausible combination of sources and sinks of CO2 from fossil fuel, land, and oceans can explain the observed C-13-Suess effect unless an increase has occurred in the C-13/C-12 isotopic discrimination of land photosynthesis. A trend toward greater discrimination under higher CO2 levels is broadly consistent with tree ring studies over the past century, with field and chamber experiments, and with geological records of C-3 plants at times of altered atmospheric CO2, but increasing discrimination has not previously been included in studies of long-term atmospheric 13C/12C measurements. We further show that the inferred discrimination increase of 0.014 +/- 0.007% ppm(-1) is largely explained by photorespiratory and mesophyll effects. This result implies that, at the global scale, land plants have regulated their stomatal conductance so as to allow the CO2 partial pressure within stomatal cavities and their intrinsic water use efficiency to increase in nearly constant proportion to the rise in atmospheric CO2 concentration.

Keeling, RF, Visbeck M.  2011.  On the linkage between Antarctic surface water stratification and global deep-water temperature. Journal of Climate. 24:3545-3557.   10.1175/2011jcli3642.1   AbstractWebsite

The suggestion is advanced that the remarkably low static stability of Antarctic surface waters may arise from a feedback loop involving global deep-water temperatures. If deep-water temperatures are too warm, this promotes Antarctic convection, thereby strengthening the inflow of Antarctic Bottom Water into the ocean interior and cooling the deep ocean. If deep waters are too cold, this promotes Antarctic stratification allowing the deep ocean to warm because of the input of North Atlantic Deep Water. A steady-state deep-water temperature is achieved such that the Antarctic surface can barely undergo convection. A two-box model is used to illustrate this feedback loop in its simplest expression and to develop basic concepts, such as the bounds on the operation of this loop. The model illustrates the possible dominating influence of Antarctic upwelling rate and Antarctic freshwater balance on global deep-water temperatures.