Export 9 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D [E] F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Eddebbar, YA, Rodgers KB, Long MC, Subramanian AC, Xie SP, Keeling RF.  2019.  El Nino-like physical and biogeochemical ocean response to tropical eruptions. Journal of Climate. 32:2627-2649.   10.1175/jcli-d-18-0458.1   AbstractWebsite

The oceanic response to recent tropical eruptions is examined in Large Ensemble (LE) experiments from two fully coupled global climate models, the Community Earth System Model (CESM) and the Geophysical Fluid Dynamics Laboratory Earth System Model (ESM2M), each forced by a distinct volcanic forcing dataset. Following the simulated eruptions of Agung, El Chichon, and Pinatubo, the ocean loses heat and gains oxygen and carbon, in general agreement with available observations. In both models, substantial global surface cooling is accompanied by El Nino-like equatorial Pacific surface warming a year after the volcanic forcing peaks. A mechanistic analysis of the CESM and ESM2M responses to Pinatubo identifies remote wind forcing from the western Pacific as a major driver of this El Nino-like response. Following eruption, faster cooling over the Maritime Continent than adjacent oceans suppresses convection and leads to persistent westerly wind anomalies over the western tropical Pacific. These wind anomalies excite equatorial downwelling Kelvin waves and the upwelling of warm subsurface anomalies in the eastern Pacific, promoting the development of El Nino conditions through Bjerknes feedbacks a year after eruption. This El Nino-like response drives further ocean heat loss through enhanced equatorial cloud albedo, and dominates global carbon uptake as upwelling of carbon-rich waters is suppressed in the tropical Pacific. Oxygen uptake occurs primarily at high latitudes, where surface cooling intensifies the ventilation of subtropical thermocline waters. These volcanically forced ocean responses are large enough to contribute to the observed decadal variability in oceanic heat, carbon, and oxygen.

Forkel, M, Carvalhais N, Rodenbeck C, Keeling R, Heimann M, Thonicke K, Zaehle S, Reichstein M.  2016.  Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science. 351:696-699.   10.1126/science.aac4971   AbstractWebsite

Atmospheric monitoring of high northern latitudes (above 40 degrees N) has shown an enhanced seasonal cycle of carbon dioxide (CO2) since the 1960s, but the underlying mechanisms are not yet fully understood. The much stronger increase in high latitudes relative to low ones suggests that northern ecosystems are experiencing large changes in vegetation and carbon cycle dynamics. We found that the latitudinal gradient of the increasing CO2 amplitude is mainly driven by positive trends in photosynthetic carbon uptake caused by recent climate change and mediated by changing vegetation cover in northern ecosystems. Our results underscore the importance of climate-vegetation-carbon cycle feedbacks at high latitudes; moreover, they indicate that in recent decades, photosynthetic carbon uptake has reacted much more strongly to warming than have carbon release processes.

Graven, HD, Keeling RF, Piper SC, Patra PK, Stephens BB, Wofsy SC, Welp LR, Sweeney C, Tans PP, Kelley JJ, Daube BC, Kort EA, Santoni GW, Bent JD.  2013.  Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science. 341:1085-1089.   10.1126/science.1239207   AbstractWebsite

Seasonal variations of atmospheric carbon dioxide (CO2) in the Northern Hemisphere have increased since the 1950s, but sparse observations have prevented a clear assessment of the patterns of long-term change and the underlying mechanisms. We compare recent aircraft-based observations of CO2 above the North Pacific and Arctic Oceans to earlier data from 1958 to 1961 and find that the seasonal amplitude at altitudes of 3 to 6 km increased by 50% for 45 degrees to 90 degrees N but by less than 25% for 10 degrees to 45 degrees N. An increase of 30 to 60% in the seasonal exchange of CO2 by northern extratropical land ecosystems, focused on boreal forests, is implicated, substantially more than simulated by current land ecosystem models. The observations appear to signal large ecological changes in northern forests and a major shift in the global carbon cycle.

Rafelski, LE, Paplawsky B, Keeling RF.  2013.  An Equilibrator System to Measure Dissolved Oxygen and Its Isotopes. Journal of Atmospheric and Oceanic Technology. 30:361-377.   10.1175/jtech-d-12-00074.1   AbstractWebsite

An equilibrator is presented that is designed to have a sufficient equilibration time even for insoluble gases, and to minimize artifacts associated with not equilibrating to the total gas tension. A gas tension device was used to balance the pressure inside the equilibrator with the total gas tension. The equilibrator has an e-folding time of 7.36 +/- 0.74 min for oxygen and oxygen isotopes, allowing changes on hourly time scales to be easily resolved. The equilibrator delivers "equilibrated" air at a flow rate of 3 mL min(-1) to an isotope ratio mass spectrometer. The high gas sampling flow rate would allow the equilibrator to be interfaced with many potential devices, but further development may be required for use at sea. This system was tested at the Scripps Institution of Oceanography pier, in La Jolla, California. A mathematical model validated with performance tests was used to assess the sensitivity of the equilibrated air composition to headspace pressure and makeup gas composition. Parameters in this model can be quantified to establish corrections under different operating conditions. For typical observed values, under the operating conditions presented here, the uncertainty in the measurement due to the equilibrator system is 2.2 per mil for delta(O-2/N-2), 1.5 per mil for delta(O-2/Ar), 0.059 per mil for delta O-18, and 0.0030 per mil for Delta O-17.

Jeong, SG, Newman S, Zhang JS, Andrews AE, Bianco L, Bagley J, Cui XG, Graven H, Kim J, Salameh P, LaFranchi BW, Priest C, Campos-Pineda M, Novakovskaia E, Sloop CD, Michelsen HA, Bambha RP, Weiss RF, Keeling R, Fischer ML.  2016.  Estimating methane emissions in California's urban and rural regions using multitower observations. Journal of Geophysical Research-Atmospheres. 121:13031-13049.   10.1002/2016jd025404   AbstractWebsite

We present an analysis of methane (CH4) emissions using atmospheric observations from 13 sites in California during June 2013 to May 2014. A hierarchical Bayesian inversion method is used to estimate CH4 emissions for spatial regions (0.3 degrees pixels for major regions) by comparing measured CH4 mixing ratios with transport model (Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian Transport) predictions based on seasonally varying California-specific CH4 prior emission models. The transport model is assessed using a combination of meteorological and carbon monoxide (CO) measurements coupled with the gridded California Air Resources Board (CARB) CO emission inventory. The hierarchical Bayesian inversion suggests that state annual anthropogenic CH4 emissions are 2.42 +/- 0.49 Tg CH4/yr (at 95% confidence), higher (1.2-1.8 times) than the current CARB inventory (1.64 Tg CH4/yr in 2013). It should be noted that undiagnosed sources of errors or uncaptured errors in the model-measurement mismatch covariance may increase these uncertainty bounds beyond that indicated here. The CH4 emissions from the Central Valley and urban regions (San Francisco Bay and South Coast Air Basins) account for similar to 58% and 26% of the total posterior emissions, respectively. This study suggests that the livestock sector is likely the major contributor to the state total CH4 emissions, in agreement with CARB's inventory. Attribution to source sectors for subregions of California using additional trace gas species would further improve the quantification of California's CH4 emissions and mitigation efforts toward the California Global Warming Solutions Act of 2006 (Assembly Bill 32).

Nevison, CD, Keeling RF, Kahru M, Manizza M, Mitchell BG, Cassar N.  2012.  Estimating net community production in the Southern Ocean based on atmospheric potential oxygen and satellite ocean color data. Global Biogeochemical Cycles. 26   10.1029/2011gb004040   AbstractWebsite

The seasonal cycle of atmospheric potential oxygen (APO similar to O-2 + 1.1 CO2) reflects three seasonally varying ocean processes: 1) thermal in- and outgassing, 2) mixed layer net community production (NCP) and 3) deep water ventilation. Previous studies have isolated the net biological seasonal signal (i.e., the sum of NCP and ventilation), after using air-sea heat flux data to estimate the thermal signal. In this study, we resolve all three components of the APO seasonal cycle using a methodology in which the ventilation signal is estimated based on atmospheric N2O data, the thermal signal is estimated based on heat flux or atmospheric Ar/N-2 data, and the production signal is inferred as a residual. The isolation of the NCP signal in APO allows for direct comparison to estimates of NCP based on satellite ocean color data, after translating the latter into an atmospheric signal using an atmospheric transport model. When applied to ocean color data using algorithms specially adapted to the Southern Ocean and APO data at three southern monitoring sites, these two independent methods converge on a similar phase and amplitude of the seasonal NCP signal in APO and yield an estimate of annual mean NCP south of 50 degrees S of 0.8-1.2 Pg C/yr, with corresponding annual mean NPP of similar to 3 Pg C/yr and a mean growing season f ratio of similar to 0.33. These results are supported by ocean biogeochemistry model simulations, in which air-sea O-2 and N2O fluxes are resolved into component thermal, ventilation and (for O-2) NCP contributions.

Nevison, CD, Manizza M, Keeling RF, Stephens BB, Bent JD, Dunne J, Ilyina T, Long M, Resplandy L, Tjiputra J, Yukimoto S.  2016.  Evaluating CMIP5 ocean biogeochemistry and Southern Ocean carbon uptake using atmospheric potential oxygen: Present-day performance and future projection. Geophysical Research Letters. 43:2077-2085.   10.1002/2015gl067584   AbstractWebsite

Observed seasonal cycles in atmospheric potential oxygen (APO similar to O-2+1.1 CO2) were used to evaluate eight ocean biogeochemistry models from the Coupled Model Intercomparison Project (CMIP5). Model APO seasonal cycles were computed from the CMIP5 air-sea O-2 and CO2 fluxes and compared to observations at three Southern Hemisphere monitoring sites. Four of the models captured either the observed APO seasonal amplitude or phasing relatively well, while the other four did not. Many models had an unrealistic seasonal phasing or amplitude of the CO2 flux, which in turn influenced APO. By 2100 under RCP8.5, the models projected little change in the O-2 component of APO but large changes in the seasonality of the CO2 component associated with ocean acidification. The models with poorer performance on present-day APO tended to project larger net carbon uptake in the Southern Ocean, both today and in 2100.

Yver, CE, Graven HD, Lucas DD, Cameron-Smith PJ, Keeling RF, Weiss RF.  2013.  Evaluating transport in the WRF model along the California coast. Atmospheric Chemistry and Physics. 13:1837-1852.   10.5194/acp-13-1837-2013   AbstractWebsite

This paper presents a step in the development of a top-down method to complement the bottom-up inventories of halocarbon emissions in California using high frequency observations, forward simulations and inverse methods. The Scripps Institution of Oceanography high-frequency atmospheric halocarbons measurement sites are located along the California coast and therefore the evaluation of transport in the chosen Weather Research Forecast (WRF) model at these sites is crucial for inverse modeling. The performance of the transport model has been investigated by comparing the wind direction and speed and temperature at four locations using aircraft weather reports as well at all METAR weather stations in our domain for hourly variations. Different planetary boundary layer (PBL) schemes, horizontal resolutions (achieved through nesting) and two meteorological datasets have been tested. Finally, simulated concentration of an inert tracer has been briefly investigated. All the PBL schemes present similar results that generally agree with observations, except in summer when the model sea breeze is too strong. At the coarse 12 km resolution, using ERA-interim (ECMWF Re-Analysis) as initial and boundary conditions leads to improvements compared to using the North American Model (NAM) dataset. Adding higher resolution nests also improves the match with the observations. However, no further improvement is observed from increasing the nest resolution from 4 km to 0.8 km. Once optimized, the model is able to reproduce tracer measurements during typical winter California large-scale events (Santa Ana). Furthermore, with the WRF/CHEM chemistry module and the European Database for Global Atmospheric Research (EDGAR) version 4.1 emissions for HFC-134a, we find that using a simple emission scaling factor is not sufficient to infer emissions, which highlights the need for more complex inversions.

Keeling, CD, Piper SC, Whorf TP, Keeling RF.  2011.  Evolution of natural and anthropogenic fluxes of atmospheric CO2 from 1957 to 2003. Tellus Series B-Chemical and Physical Meteorology. 63:1-22.   10.1111/j.1600-0889.2010.00507.x   AbstractWebsite

An analysis is carried out of the longest available records of atmospheric CO(2) and its 13C/12C ratio from the Scripps Institution of Oceanography network of fixed stations, augmented by data in the 1950s and 1960s from ships and ice floes. Using regression analysis, we separate the interhemispheric gradients of CO(2) and 13C/12C into: (1) a stationary (possibly natural) component that is constant with time, and (2) a time-evolving component that increases in proportion to fossil fuel emissions. Inverse calculations using an atmospheric transport model are used to interpret the components of the gradients in terms of land and ocean sinks. The stationary gradients in CO(2) and 13C/12C are both satisfactorily explained by ocean processes, including an ocean carbon loop that transports 0.5 PgC yr-1 southwards in the ocean balanced by an atmospheric return flow. A stationary northern land sink appears to be ruled out unless its effect on the gradient has been offset by a strong rectifier effect, which seems doubtful. A growing northern land sink is not ruled out, but has an uncertain magnitude (0.3-1.7 PgC yr-1 centred on year 2003) dependent on the rate at which CO(2) from fossil fuel burning is dispersed vertically and between hemispheres.