Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Graven, H, Fischer ML, Lueker T, Jeong S, Guilderson TP, Keeling RF, Bambha R, Brophy K, Callahan W, Cui X, Frankenberg C, Gurney KR, LaFranchi BW, Lehman SJ, Michelsen H, Miller JB, Newman S, Paplawsky W, Parazoo NC, Sloop C, Walker SJ.  2018.  Assessing fossil fuel CO2 emissions in California using atmospheric observations and models. Environmental Research Letters. 13   10.1088/1748-9326/aabd43   AbstractWebsite

Analysis systems incorporating atmospheric observations could provide a powerful tool for validating fossil fuel CO2 (ffCO(2)) emissions reported for individual regions, provided that fossil fuel sources can be separated from other CO2 sources or sinks and atmospheric transport can be accurately accounted for. We quantified ffCO(2) by measuring radiocarbon (C-14) in CO2, an accurate fossil-carbon tracer, at nine observation sites in California for three months in 2014-15. There is strong agreement between the measurements and ffCO(2) simulated using a high-resolution atmospheric model and a spatiotemporally-resolved fossil fuel flux estimate. Inverse estimates of total in-state ffCO(2) emissions are consistent with the California Air Resources Board's reported ffCO(2) emissions, providing tentative validation of California's reported ffCO(2) emissions in 2014-15. Continuing this prototype analysis system could provide critical independent evaluation of reported ffCO(2) emissions and emissions reductions in California, and the system could be expanded to other, more data-poor regions.

Verhulst, KR, Karion A, Kim J, Salameh PK, Keeling RF, Newman S, Miller J, Sloop C, Pongetti T, Rao P, Wong C, Hopkins FM, Yadav V, Weiss RF, Duren RM, Miller CE.  2017.  Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project - Part 1: calibration, urban enhancements, and uncertainty estimates. Atmospheric Chemistry and Physics. 17:8313-8341.   10.5194/acp-17-8313-2017   AbstractWebsite

We report continuous surface observations of carbon dioxide (CO2) and methane (CH4) from the Los Angeles (LA) Megacity Carbon Project during 2015. We devised a calibration strategy, methods for selection of background air masses, calculation of urban enhancements, and a detailed algorithm for estimating uncertainties in urban-scale CO2 and CH4 measurements. These methods are essential for understanding carbon fluxes from the LA megacity and other complex urban environments globally. We estimate background mole fractions entering LA using observations from four "extra-urban" sites including two "marine" sites located south of LA in La Jolla (LJO) and offshore on San Clemente Island (SCI), one "continental" site located in Victorville (VIC), in the high desert northeast of LA, and one "continental/mid-troposphere" site located on Mount Wilson (MWO) in the San Gabriel Mountains. We find that a local marine background can be established to within similar to 1 ppm CO2 and similar to 10 ppb CH4 using these local measurement sites. Overall, atmospheric carbon dioxide and methane levels are highly variable across Los Angeles. "Urban" and "suburban" sites show moderate to large CO2 and CH4 enhancements relative to a marine background estimate. The USC (University of Southern California) site near downtown LA exhibits median hourly enhancements of similar to 20 ppm CO2 and similar to 150 ppb CH4 during 2015 as well as similar to 15 ppm CO2 and similar to 80 ppb CH4 during mid-afternoon hours (12:00-16:00 LT, local time), which is the typical period of focus for flux inversions. The estimated measurement uncertainty is typically better than 0.1 ppm CO2 and 1 ppb CH4 based on the repeated standard gas measurements from the LA sites during the last 2 years, similar to Andrews et al. (2014). The largest component of the measurement uncertainty is due to the single-point calibration method; however, the uncertainty in the background mole fraction is much larger than the measurement uncertainty. The background uncertainty for the marine background estimate is similar to 10 and similar to 15% of the median mid-afternoon enhancement near downtown LA for CO2 and CH4, respectively. Overall, analytical and background uncertainties are small relative to the local CO2 and CH4 enhancements; however, our results suggest that reducing the uncertainty to less than 5% of the median mid-afternoon enhancement will require detailed assessment of the impact of meteorology on background conditions.

Jeong, SG, Newman S, Zhang JS, Andrews AE, Bianco L, Bagley J, Cui XG, Graven H, Kim J, Salameh P, LaFranchi BW, Priest C, Campos-Pineda M, Novakovskaia E, Sloop CD, Michelsen HA, Bambha RP, Weiss RF, Keeling R, Fischer ML.  2016.  Estimating methane emissions in California's urban and rural regions using multitower observations. Journal of Geophysical Research-Atmospheres. 121:13031-13049.   10.1002/2016jd025404   AbstractWebsite

We present an analysis of methane (CH4) emissions using atmospheric observations from 13 sites in California during June 2013 to May 2014. A hierarchical Bayesian inversion method is used to estimate CH4 emissions for spatial regions (0.3 degrees pixels for major regions) by comparing measured CH4 mixing ratios with transport model (Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian Transport) predictions based on seasonally varying California-specific CH4 prior emission models. The transport model is assessed using a combination of meteorological and carbon monoxide (CO) measurements coupled with the gridded California Air Resources Board (CARB) CO emission inventory. The hierarchical Bayesian inversion suggests that state annual anthropogenic CH4 emissions are 2.42 +/- 0.49 Tg CH4/yr (at 95% confidence), higher (1.2-1.8 times) than the current CARB inventory (1.64 Tg CH4/yr in 2013). It should be noted that undiagnosed sources of errors or uncaptured errors in the model-measurement mismatch covariance may increase these uncertainty bounds beyond that indicated here. The CH4 emissions from the Central Valley and urban regions (San Francisco Bay and South Coast Air Basins) account for similar to 58% and 26% of the total posterior emissions, respectively. This study suggests that the livestock sector is likely the major contributor to the state total CH4 emissions, in agreement with CARB's inventory. Attribution to source sectors for subregions of California using additional trace gas species would further improve the quantification of California's CH4 emissions and mitigation efforts toward the California Global Warming Solutions Act of 2006 (Assembly Bill 32).

Yver, CE, Graven HD, Lucas DD, Cameron-Smith PJ, Keeling RF, Weiss RF.  2013.  Evaluating transport in the WRF model along the California coast. Atmospheric Chemistry and Physics. 13:1837-1852.   10.5194/acp-13-1837-2013   AbstractWebsite

This paper presents a step in the development of a top-down method to complement the bottom-up inventories of halocarbon emissions in California using high frequency observations, forward simulations and inverse methods. The Scripps Institution of Oceanography high-frequency atmospheric halocarbons measurement sites are located along the California coast and therefore the evaluation of transport in the chosen Weather Research Forecast (WRF) model at these sites is crucial for inverse modeling. The performance of the transport model has been investigated by comparing the wind direction and speed and temperature at four locations using aircraft weather reports as well at all METAR weather stations in our domain for hourly variations. Different planetary boundary layer (PBL) schemes, horizontal resolutions (achieved through nesting) and two meteorological datasets have been tested. Finally, simulated concentration of an inert tracer has been briefly investigated. All the PBL schemes present similar results that generally agree with observations, except in summer when the model sea breeze is too strong. At the coarse 12 km resolution, using ERA-interim (ECMWF Re-Analysis) as initial and boundary conditions leads to improvements compared to using the North American Model (NAM) dataset. Adding higher resolution nests also improves the match with the observations. However, no further improvement is observed from increasing the nest resolution from 4 km to 0.8 km. Once optimized, the model is able to reproduce tracer measurements during typical winter California large-scale events (Santa Ana). Furthermore, with the WRF/CHEM chemistry module and the European Database for Global Atmospheric Research (EDGAR) version 4.1 emissions for HFC-134a, we find that using a simple emission scaling factor is not sufficient to infer emissions, which highlights the need for more complex inversions.