Export 8 results:
Sort by: Author Title Type [ Year  (Desc)]
Eddebbar, YA, Rodgers KB, Long MC, Subramanian AC, Xie SP, Keeling RF.  2019.  El Nino-like physical and biogeochemical ocean response to tropical eruptions. Journal of Climate. 32:2627-2649.   10.1175/jcli-d-18-0458.1   AbstractWebsite

The oceanic response to recent tropical eruptions is examined in Large Ensemble (LE) experiments from two fully coupled global climate models, the Community Earth System Model (CESM) and the Geophysical Fluid Dynamics Laboratory Earth System Model (ESM2M), each forced by a distinct volcanic forcing dataset. Following the simulated eruptions of Agung, El Chichon, and Pinatubo, the ocean loses heat and gains oxygen and carbon, in general agreement with available observations. In both models, substantial global surface cooling is accompanied by El Nino-like equatorial Pacific surface warming a year after the volcanic forcing peaks. A mechanistic analysis of the CESM and ESM2M responses to Pinatubo identifies remote wind forcing from the western Pacific as a major driver of this El Nino-like response. Following eruption, faster cooling over the Maritime Continent than adjacent oceans suppresses convection and leads to persistent westerly wind anomalies over the western tropical Pacific. These wind anomalies excite equatorial downwelling Kelvin waves and the upwelling of warm subsurface anomalies in the eastern Pacific, promoting the development of El Nino conditions through Bjerknes feedbacks a year after eruption. This El Nino-like response drives further ocean heat loss through enhanced equatorial cloud albedo, and dominates global carbon uptake as upwelling of carbon-rich waters is suppressed in the tropical Pacific. Oxygen uptake occurs primarily at high latitudes, where surface cooling intensifies the ventilation of subtropical thermocline waters. These volcanically forced ocean responses are large enough to contribute to the observed decadal variability in oceanic heat, carbon, and oxygen.

Wagner, TJW, Dell RW, Eisenman I, Keeling RF, Padman L, Severinghaus JP.  2018.  Wave inhibition by sea ice enables trans-Atlantic ice rafting of debris during Heinrich events. Earth and Planetary Science Letters. 495:157-163.   10.1016/j.epsl.2018.05.006   AbstractWebsite

The last glacial period was punctuated by episodes of massive iceberg calving from the Laurentide Ice Sheet, called Heinrich events, which are identified by layers of ice-rafted debris (IRD) in ocean sediment cores from the North Atlantic. The thickness of these IRD layers declines more gradually with distance from the iceberg sources than would be expected based on present-day iceberg drift and decay. Here we model icebergs as passive Lagrangian particles driven by ocean currents, winds, and sea surface temperatures. The icebergs are released in a comprehensive climate model simulation of the last glacial maximum (LGM), as well as a simulation of the modern climate. The two simulated climates result in qualitatively similar distributions of iceberg meltwater and hence debris, with the colder temperatures of the LGM having only a relatively small effect on meltwater spread. In both scenarios, meltwater flux falls off rapidly with zonal distance from the source, in contrast with the more uniform spread of IRD in sediment cores. To address this discrepancy, we propose a physical mechanism that could have prolonged the lifetime of icebergs during Heinrich events. The mechanism involves a surface layer of cold and fresh meltwater formed from, and retained around, large densely packed armadas of icebergs. This leads to wintertime sea ice formation even in relatively low latitudes. The sea ice in turn shields the icebergs from wave erosion, which is the main source of iceberg ablation. We find that sea ice could plausibly have formed around the icebergs during four months each winter. Allowing for four months of sea ice in the model results in a simulated IRD distribution which approximately agrees with the distribution of IRD in sediment cores. (C) 2018 Elsevier B.V. All rights reserved.

Keeling, RF, Graven HD, Welp LR, Resplandy L, Bi J, Piper SC, Sun Y, Bollenbacher A, Meijer HAJ.  2017.  Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis. Proceedings of the National Academy of Sciences of the United States of America. 114:10361-10366.   10.1073/pnas.1619240114   AbstractWebsite

A decrease in the C-13/C-12 ratio of atmospheric CO2 has been documented by direct observations since 1978 and from ice core measurements since the industrial revolution. This decrease, known as the C-13-Suess effect, is driven primarily by the input of fossil fuel-derived CO2 but is also sensitive to land and ocean carbon cycling and uptake. Using updated records, we show that no plausible combination of sources and sinks of CO2 from fossil fuel, land, and oceans can explain the observed C-13-Suess effect unless an increase has occurred in the C-13/C-12 isotopic discrimination of land photosynthesis. A trend toward greater discrimination under higher CO2 levels is broadly consistent with tree ring studies over the past century, with field and chamber experiments, and with geological records of C-3 plants at times of altered atmospheric CO2, but increasing discrimination has not previously been included in studies of long-term atmospheric 13C/12C measurements. We further show that the inferred discrimination increase of 0.014 +/- 0.007% ppm(-1) is largely explained by photorespiratory and mesophyll effects. This result implies that, at the global scale, land plants have regulated their stomatal conductance so as to allow the CO2 partial pressure within stomatal cavities and their intrinsic water use efficiency to increase in nearly constant proportion to the rise in atmospheric CO2 concentration.

Forkel, M, Carvalhais N, Rodenbeck C, Keeling R, Heimann M, Thonicke K, Zaehle S, Reichstein M.  2016.  Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science. 351:696-699.   10.1126/science.aac4971   AbstractWebsite

Atmospheric monitoring of high northern latitudes (above 40 degrees N) has shown an enhanced seasonal cycle of carbon dioxide (CO2) since the 1960s, but the underlying mechanisms are not yet fully understood. The much stronger increase in high latitudes relative to low ones suggests that northern ecosystems are experiencing large changes in vegetation and carbon cycle dynamics. We found that the latitudinal gradient of the increasing CO2 amplitude is mainly driven by positive trends in photosynthetic carbon uptake caused by recent climate change and mediated by changing vegetation cover in northern ecosystems. Our results underscore the importance of climate-vegetation-carbon cycle feedbacks at high latitudes; moreover, they indicate that in recent decades, photosynthetic carbon uptake has reacted much more strongly to warming than have carbon release processes.

Graven, HD, Keeling RF, Piper SC, Patra PK, Stephens BB, Wofsy SC, Welp LR, Sweeney C, Tans PP, Kelley JJ, Daube BC, Kort EA, Santoni GW, Bent JD.  2013.  Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science. 341:1085-1089.   10.1126/science.1239207   AbstractWebsite

Seasonal variations of atmospheric carbon dioxide (CO2) in the Northern Hemisphere have increased since the 1950s, but sparse observations have prevented a clear assessment of the patterns of long-term change and the underlying mechanisms. We compare recent aircraft-based observations of CO2 above the North Pacific and Arctic Oceans to earlier data from 1958 to 1961 and find that the seasonal amplitude at altitudes of 3 to 6 km increased by 50% for 45 degrees to 90 degrees N but by less than 25% for 10 degrees to 45 degrees N. An increase of 30 to 60% in the seasonal exchange of CO2 by northern extratropical land ecosystems, focused on boreal forests, is implicated, substantially more than simulated by current land ecosystem models. The observations appear to signal large ecological changes in northern forests and a major shift in the global carbon cycle.

Welp, LR, Keeling RF, Meijer HAJ, Bollenbacher AF, Piper SC, Yoshimura K, Francey RJ, Allison CE, Wahlen M.  2011.  Interannual variability in the oxygen isotopes of atmospheric CO2 driven by El Nino. Nature. 477:579-582.   10.1038/nature10421   AbstractWebsite

The stable isotope ratios of atmospheric CO2 (O-18/O-16 and C-13/C-12) have been monitored since 1977 to improve our understanding of the global carbon cycle, because biosphere-atmosphere exchange fluxes affect the different atomic masses in a measurable way(1). Interpreting the O-18/O-16 variability has proved difficult, however, because oxygen isotopes in CO2 are influenced by both the carbon cycle and the water cycle(2). Previous attention focused on the decreasing O-18/O-16 ratio in the 1990s, observed by the global Cooperative Air Sampling Network of the US National Oceanic and Atmospheric Administration Earth System Research Laboratory. This decrease was attributed variously to a number of processes including an increase in Northern Hemisphere soil respiration(3); a global increase in C-4 crops at the expense of C-3 forests(4); and environmental conditions, such as atmospheric turbulence(5) and solar radiation(6), that affect CO2 exchange between leaves and the atmosphere. Here we present 30 years' worth of data on O-18/O-16 in CO2 from the Scripps Institution of Oceanography global flask network and show that the interannual variability is strongly related to the El Nino/Southern Oscillation. We suggest that the redistribution of moisture and rainfall in the tropics during an El Nino increases the O-18/O-16 ratio of precipitation and plant water, and that this signal is then passed on to atmospheric CO2 by biosphere-atmosphere gas exchange. We show how the decay time of the El Nino anomaly in this data set can be useful in constraining global gross primary production. Our analysis shows a rapid recovery from El Nino events, implying a shorter cycling time of CO2 with respect to the terrestrial biosphere and oceans than previously estimated. Our analysis suggests that current estimates of global gross primary production, of 120 petagrams of carbon per year(7), may be too low, and that a best guess of 150-175 petagrams of carbon per year better reflects the observed rapid cycling of CO2. Although still tentative, such a revision would present a new benchmark by which to evaluate global biospheric carbon cycling models.

Perks, HM, Charles CD, Keeling RF.  2002.  Precessionally forced productivity variations across the equatorial Pacific. Paleoceanography. 17   10.1029/2000pa000603   AbstractWebsite

[1] Measurements of combustion oxygen demand (COD) in two sediment cores provide a record of paleoproductivity driven by surface-ocean dynamics in the equatorial eastern and western Pacific for the past 400,000 years. The COD time series are well correlated with each other over this time span and show pronounced precessionally forced peaks of higher productivity during globally colder periods. The phase of this signal in the two cores is identical, to within chronological uncertainties, suggesting a common insolation forcing mechanism for the upper ocean across the equatorial Pacific. COD is also in phase with the precessionally forced component of global ice volume, as indicated by oxygen isotopes, and with atmospheric methane in the Vostok ice core. These relationships imply that the COD relative paleoproductivity index provides an important diagnostic measure of the mechanisms of tropical ocean dynamics and climate change.