Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Rafelski, LE, Paplawsky B, Keeling RF.  2015.  Continuous measurements of dissolved O-2 and oxygen isotopes in the Southern California coastal ocean. Marine Chemistry. 174:94-102.   10.1016/j.marchem.2015.05.011   AbstractWebsite

Dissolved O-2/N-2, O-2/Ar, O-2 saturation and delta O-18 were measured continuously near the surface ocean at the Scripps Institution of Oceanography pier in La Jolla, California, for five weeks. The data showed diurnal cycles, in O-2 and delta O-18, with amplitudes of 19 mmol m(-3) and 1.1%., respectively. The diurnal cycles are well described by a box model that includes photosynthesis, respiration, air-sea gas exchange, and mixing. The timing of the cycles can be explained using a photosynthesis rate proportional to photosynthetically active radiation, and the shapes of the cycles can be explained by mixing with a subsurface layer of water that is supersaturated in O-2. Based on the diurnal cycles in O-2 and delta O-18, the average maximum daily photosynthesis rate was 3.7-4.7 mmol O-2 m(-3) h(-1), which is supported by the light-saturated photosynthesis rate estimated from the measured chlorophyll concentration. In the future, these continuous measurement techniques could be used at different locations and depths to improve the understanding of variability in oceanic primary production. (C) 2015 Elsevier B.V. All rights reserved.

2013
Rafelski, LE, Paplawsky B, Keeling RF.  2013.  An Equilibrator System to Measure Dissolved Oxygen and Its Isotopes. Journal of Atmospheric and Oceanic Technology. 30:361-377.   10.1175/jtech-d-12-00074.1   AbstractWebsite

An equilibrator is presented that is designed to have a sufficient equilibration time even for insoluble gases, and to minimize artifacts associated with not equilibrating to the total gas tension. A gas tension device was used to balance the pressure inside the equilibrator with the total gas tension. The equilibrator has an e-folding time of 7.36 +/- 0.74 min for oxygen and oxygen isotopes, allowing changes on hourly time scales to be easily resolved. The equilibrator delivers "equilibrated" air at a flow rate of 3 mL min(-1) to an isotope ratio mass spectrometer. The high gas sampling flow rate would allow the equilibrator to be interfaced with many potential devices, but further development may be required for use at sea. This system was tested at the Scripps Institution of Oceanography pier, in La Jolla, California. A mathematical model validated with performance tests was used to assess the sensitivity of the equilibrated air composition to headspace pressure and makeup gas composition. Parameters in this model can be quantified to establish corrections under different operating conditions. For typical observed values, under the operating conditions presented here, the uncertainty in the measurement due to the equilibrator system is 2.2 per mil for delta(O-2/N-2), 1.5 per mil for delta(O-2/Ar), 0.059 per mil for delta O-18, and 0.0030 per mil for Delta O-17.

1998
Perks, HM, Keeling RF.  1998.  A 400 kyr record of combustion oxygen demand in the western equatorial Pacific: Evidence for a precessionally forced climate response. Paleoceanography. 13:63-69.   10.1029/97pa02892   AbstractWebsite

We have developed a combustion analysis technique for sediments which measures the amount of O-2 consumed by the reduced species. We have measured this quantity, which we call "combustion oxygen demand (COD)," on a carbonate-rich sediment core from the Ontong-Java Plateau in the western equatorial Pacific back to marine oxygen isotope stage 11. The precision of the COD technique is +/-6.3 mu mol O-2 g(-1), which corresponds to similar to+/-0.0076% wt C-org, assuming oxidation of organic carbon dominates the signal. The COD time series is characterized by values which are about twice as high during glacials as during interglacials, the largest shift occurring from 401 mu mol O-2 g(-1) in midstage 6 to 144 mu mol O-2 g(-1) at 5e, and is coherent with the oxygen isotope curve of Globigerinoides sacculifer in the same core at the Milankovitch frequencies of 100 and 41 kyr, Pronounced variations in the 19-23 kyr band suggest that the climate of the western equatorial Pacific is sensitive to precessional forcing, a response not apparent from other records obtained in this region.