Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Nevison, CD, Manizza M, Keeling RF, Stephens BB, Bent JD, Dunne J, Ilyina T, Long M, Resplandy L, Tjiputra J, Yukimoto S.  2016.  Evaluating CMIP5 ocean biogeochemistry and Southern Ocean carbon uptake using atmospheric potential oxygen: Present-day performance and future projection. Geophysical Research Letters. 43:2077-2085.   10.1002/2015gl067584   AbstractWebsite

Observed seasonal cycles in atmospheric potential oxygen (APO similar to O-2+1.1 CO2) were used to evaluate eight ocean biogeochemistry models from the Coupled Model Intercomparison Project (CMIP5). Model APO seasonal cycles were computed from the CMIP5 air-sea O-2 and CO2 fluxes and compared to observations at three Southern Hemisphere monitoring sites. Four of the models captured either the observed APO seasonal amplitude or phasing relatively well, while the other four did not. Many models had an unrealistic seasonal phasing or amplitude of the CO2 flux, which in turn influenced APO. By 2100 under RCP8.5, the models projected little change in the O-2 component of APO but large changes in the seasonality of the CO2 component associated with ocean acidification. The models with poorer performance on present-day APO tended to project larger net carbon uptake in the Southern Ocean, both today and in 2100.

Rodenbeck, C, Keeling RF, Bakker DCE, Metz N, Olsen A, Sabine C, Heimann M.  2013.  Global surface-ocean p(CO2) and sea-air CO2 flux variability from an observation-driven ocean mixed-layer scheme. Ocean Science. 9:193-216.   10.5194/os-9-193-2013   AbstractWebsite

A temporally and spatially resolved estimate of the global surface-ocean CO2 partial pressure field and the sea air CO2 flux is presented, obtained by fitting a simple data-driven diagnostic model of ocean mixed-layer biogeochemistry to surface-ocean CO2 partial pressure data from the SOCAT v1.5 database. Results include seasonal, interannual, and short-term (daily) variations. In most regions, estimated seasonality is well constrained from the data, and compares well to the widely used monthly climatology by Takahashi et al. (2009). Comparison to independent data tentatively supports the slightly higher seasonal variations in our estimates in some areas. We also fitted the diagnostic model to atmospheric CO2 data. The results of this are less robust, but in those areas where atmospheric signals are not strongly influenced by land flux variability, their seasonality is nevertheless consistent with the results based on surface-ocean data. From a comparison with an independent seasonal climatology of surface-ocean nutrient concentration, the diagnostic model is shown to capture relevant surface-ocean biogeochemical processes reasonably well. Estimated interannual variations will be presented and discussed in a companion paper.

Keeling, RF, Kortzinger A, Gruber N.  2010.  Ocean deoxygenation in a warming world. Annual Review of Marine Science. 2:199-229., Palo Alto: Annual Reviews   10.1146/annurev.marine.010908.163855   Abstract

Ocean warming and increased stratification of the upper ocean caused by global climate change will likely lead to declines in dissolved O(2) in the ocean interior (ocean deoxygenation) with implications for ocean productivity, nutrient cycling, carbon cycling, and marine habitat. Ocean models predict declines of 1 to 7% in the global ocean O(2) inventory over the next century, with declines continuing for a thousand years or more into the future. An important consequence may be an expansion in the area and volume of so-called oxygen minimum zones, where O(2) levels are too low to support many macrofauna and profound changes in biogeochemical cycling occur. Significant deoxy enation has occurred over the past 50 years in the North Pacific and tropical oceans, suggesting larger changes are looming. The potential for larger O(2) declines in the future suggests the need for all improved observing system for tracking ocean O(2) changes.

Keeling, RF, Visbeck M.  2005.  Northern ice discharges and Antarctic warming: could ocean eddies provide the link? Quaternary Science Reviews. 24:1809-1820.   10.1016/j.quascirev.2005.04.005   AbstractWebsite

A mechanism is advanced for explaining the Antarctic warm events from 90 to 30ka BP which involves meltwater-induced changes in the salinity gradient across the Antarctic Circumpolar Current (ACC) and consequent changes in the poleward heat transport by ocean eddies. Based on simple linear scale analysis, the mechanism is shown to yield warming in the Antarctic interior of roughly the magnitude seen in Antarctic ice-core records (similar to 2 degrees C) in response to ice discharges into the North Atlantic. Consistent with observations, the mechanism produces gradual Antarctic warming and cooling, as dictated by the time required for salinity anomalies to build up and dissipate across the ACC. The mechanism also allows the onset of warming or cooling to be tied to changes in Atlantic overturning, which is relevant here, not for influencing ocean heat transport directly, but for influencing the routing of meltwater from the North Atlantic into the Southern Ocean. The ideas presented here highlight the possibility that eddy processes in the ocean may play a first-order role in aspects of climate variability on millennial time scales. (c) 2005 Elsevier Ltd. All rights reserved.