Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Graven, HD, Guilderson TP, Keeling RF.  2012.  Observations of radiocarbon in CO2 at seven global sampling sites in the Scripps flask network: Analysis of spatial gradients and seasonal cycles. Journal of Geophysical Research-Atmospheres. 117   10.1029/2011jd016535   AbstractWebsite

High precision measurements of Delta C-14 were conducted for monthly samples of CO2 from seven global stations over 2- to 16-year periods ending in 2007. Mean Delta C-14 over 2005-07 in the Northern Hemisphere was 5 parts per thousand lower than Delta C-14 in the Southern Hemisphere, similar to recent observations from I. Levin. This is a significant shift from 1988-89 when Delta C-14 in the Northern Hemisphere was slightly higher than the South. The influence of fossil fuel CO2 emission and transport was simulated for each of the observation sites by the TM3 atmospheric transport model and compared to other models that participated in the Transcom 3 Experiment. The simulated interhemispheric gradient caused by fossil fuel CO2 emissions was nearly the same in both 1988-89 and 2005-07, due to compensating effects from rising emissions and decreasing sensitivity of Delta C-14 to fossil fuel CO2. The observed 5 parts per thousand shift must therefore have been caused by non-fossil influences, most likely due to changes in the air-sea C-14 flux in the Southern Ocean. Seasonal cycles with higher Delta C-14 in summer or fall were evident at most stations, with largest amplitudes observed at Point Barrow (71 degrees N) and La Jolla (32 degrees N). Fossil fuel emissions do not account for the seasonal cycles of Delta C-14 in either hemisphere, indicating strong contributions from non-fossil influences, most likely from stratosphere-troposphere exchange.

Keeling, CD, Piper SC, Whorf TP, Keeling RF.  2011.  Evolution of natural and anthropogenic fluxes of atmospheric CO2 from 1957 to 2003. Tellus Series B-Chemical and Physical Meteorology. 63:1-22.   10.1111/j.1600-0889.2010.00507.x   AbstractWebsite

An analysis is carried out of the longest available records of atmospheric CO(2) and its 13C/12C ratio from the Scripps Institution of Oceanography network of fixed stations, augmented by data in the 1950s and 1960s from ships and ice floes. Using regression analysis, we separate the interhemispheric gradients of CO(2) and 13C/12C into: (1) a stationary (possibly natural) component that is constant with time, and (2) a time-evolving component that increases in proportion to fossil fuel emissions. Inverse calculations using an atmospheric transport model are used to interpret the components of the gradients in terms of land and ocean sinks. The stationary gradients in CO(2) and 13C/12C are both satisfactorily explained by ocean processes, including an ocean carbon loop that transports 0.5 PgC yr-1 southwards in the ocean balanced by an atmospheric return flow. A stationary northern land sink appears to be ruled out unless its effect on the gradient has been offset by a strong rectifier effect, which seems doubtful. A growing northern land sink is not ruled out, but has an uncertain magnitude (0.3-1.7 PgC yr-1 centred on year 2003) dependent on the rate at which CO(2) from fossil fuel burning is dispersed vertically and between hemispheres.