Publications

Export 7 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
Graven, H, Allison CE, Etheridge DM, Hammer S, Keeling RF, Levin I, Meijer HAJ, Rubino M, Tans PP, Trudinger CM, Vaughn BH, White JWC.  2017.  Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6. Geoscientific Model Development. 10:4405-4417.   10.5194/gmd-10-4405-2017   AbstractWebsite

The isotopic composition of carbon (Delta C-14 and delta C-13) in atmospheric CO2 and in oceanic and terrestrial carbon reservoirs is influenced by anthropogenic emissions and by natural carbon exchanges, which can respond to and drive changes in climate. Simulations of C-14 and C-13 in the ocean and terrestrial components of Earth system models (ESMs) present opportunities for model evaluation and for investigation of carbon cycling, including anthropogenic CO2 emissions and uptake. The use of carbon isotopes in novel evaluation of the ESMs' component ocean and terrestrial biosphere models and in new analyses of historical changes may improve predictions of future changes in the carbon cycle and climate system. We compile existing data to produce records of Delta C-14 and delta C-13 in atmospheric CO2 for the historical period 1850-2015. The primary motivation for this compilation is to provide the atmospheric boundary condition for historical simulations in the Coupled Model Intercomparison Project 6 (CMIP6) for models simulating carbon isotopes in the ocean or terrestrial biosphere. The data may also be useful for other carbon cycle modelling activities.

2014
Rodgers, KB, Aumont O, Fletcher SEM, Plancherel Y, Bopp L, Montegut CD, Iudicone D, Keeling RF, Madec G, Wanninkhof R.  2014.  Strong sensitivity of Southern Ocean carbon uptake and nutrient cycling to wind stirring. Biogeosciences. 11:4077-4098.   10.5194/bg-11-4077-2014   AbstractWebsite

Here we test the hypothesis that winds have an important role in determining the rate of exchange of CO2 between the atmosphere and ocean through wind stirring over the Southern Ocean. This is tested with a sensitivity study using an ad hoc parameterization of wind stirring in an ocean carbon cycle model, where the objective is to identify the way in which perturbations to the vertical density structure of the planetary boundary in the ocean impacts the carbon cycle and ocean biogeochemistry. Wind stirring leads to reduced uptake of CO2 by the Southern Ocean over the period 2000-2006, with a relative reduction with wind stirring on the order of 0.9 Pg C yr(-1) over the region south of 45 degrees S. This impacts not only the mean carbon uptake, but also the phasing of the seasonal cycle of carbon and other ocean biogeochemical tracers. Enhanced wind stirring delays the seasonal onset of stratification, and this has large impacts on both entrainment and the biological pump. It is also found that there is a strong reduction on the order of 25-30% in the concentrations of NO3 exported in Subantarctic Mode Water (SAMW) to wind stirring. This finds expression not only locally over the Southern Ocean, but also over larger scales through the impact on advected nutrients. In summary, the large sensitivity identified with the ad hoc wind stirring parameterization offers support for the importance of wind stirring for global ocean biogeochemistry through its impact over the Southern Ocean.

2012
Manizza, M, Keeling RF, Nevison CD.  2012.  On the processes controlling the seasonal cycles of the air-sea fluxes of O2 and N2O: A modelling study. Tellus Series B-Chemical and Physical Meteorology. 64   10.3402/tellusb.v64i0.18429   AbstractWebsite

The seasonal dynamics of the air-sea gas flux of oxygen (O-2) are controlled by multiple processes occurring simultaneously. Previous studies showed how to separate the thermal component from the total O-2 flux to quantify the residual oxygen flux due to biological processes. However, this biological signal includes the effect of both net euphotic zone production (NEZP) and subsurface water ventilation. To help understand and separate these two components, we use a large-scale ocean general circulation model (OGCM), globally configured, and coupled to a biogeochemical model. The combined model implements not only the oceanic cycle of O-2 but also the cycles of nitrous oxide (N2O), argon (Ar) and nitrogen (N-2). For this study, we apply a technique to distinguish the fluxes of O-2 driven separately by thermal forcing, NEZP, and address the role of ocean ventilation by carrying separate O-2 components in the model driven by solubility, NEZP and ventilation. Model results show that the ventilation component can be neglected in summer compared to the production and thermal components polewards but not equatorward of 30 degrees in each hemisphere. This also implies that neglecting the role of ventilation in the subtropical areas would lead to overestimation of the component of O-2 flux due to NEZP by 20-30%. Model results also show that the ventilation components of air-sea O-2 and N2O fluxes are strongly anti-correlated in a ratio that reflects the subsurface tracer/tracer relationships (similar to 0.1 mmol N2O/mol O-2) as derived from observations. The results support the use of simple scaling relationships linking together the thermally driven fluxes of Ar, N-2 and O-2. Furthermore, our study also shows that for latitudes polewards of 30 degrees of both hemispheres, the Garcia and Keeling (2001) climatology, when compared to our model results, has a phasing error with the fluxes being too early by similar to 2-3 weeks.

2005
Nevison, CD, Keeling RF, Weiss RF, Popp BN, Jin X, Fraser PJ, Porter LW, Hess PG.  2005.  Southern Ocean ventilation inferred from seasonal cycles of atmospheric N2O and O2/N2 at Cape Grim, Tasmania. Tellus Series B-Chemical and Physical Meteorology. 57:218-229.   10.1111/j.1600-0889.2005.00143.x   AbstractWebsite

The seasonal cycle of atmospheric N(2)O is derived from a 10-yr observational record at Cape Grim, Tasmania (41 degrees S, 145 degrees E). After correcting for thermal and stratospheric influences, the observed atmospheric seasonal cycle is consistent with the seasonal outgassing of microbially produced N(2)O from the Southern Ocean, as predicted by an ocean biogeochemistry model coupled to an atmospheric transport model (ATM). The model-observation comparison suggests a Southern Ocean N(2)O source of similar to 0.9 Tg N yr(-1) and is the first study to reproduce observed atmospheric seasonal cycles in N(2)O using specified surface sources in forward ATM runs. However, these results are sensitive to the thermal and stratospheric corrections applied to the atmospheric N(2)O data. The correlation in subsurface waters between apparent oxygen utilization (AOU) and N(2)O production (approximated as the concentration in excess of atmospheric equilibrium Delta N(2)O) is exploited to infer the atmospheric seasonal cycle in O(2)/N(2) due to ventilation of O(2)-depleted subsurface waters. Subtracting this cycle from the observed, thermally corrected seasonal cycle in atmospheric O(2)/N(2) allows the residual O(2)/N(2) signal from surface net community production to be inferred. Because N(2)O is only produced in subsurface ocean waters, where it is correlated to O(2) consumption, atmospheric N(2)O observations provide a methodology for distinguishing the surface production and subsurface ventilation signals in atmospheric O(2)/N(2), which have previously been inseparable.

2004
Keeling, RF, Blaine T, Paplawsky B, Katz L, Atwood C, Brockwell T.  2004.  Measurement of changes in atmospheric Ar/N2 ratio using a rapid-switching, single-capillary mass spectrometer system. Tellus Series B-Chemical and Physical Meteorology. 56:322-338.   10.1111/j.1600-0889.2004.00117.x   AbstractWebsite

The atmospheric Ar/N-2 ratio is expected to undergo very slight variations due to exchanges of Ar and N-2 across the air-sea interface, driven by ocean solubility changes. Observations of these variations may provide useful constraints on large-scale fluxes of heat across the air-sea interface. A mass spectrometer system is described that incorporates a magnet with a wide exit face, allowing a large mass spread, and incorporates an inlet with rapid (5 s) switching of sources gases through a single capillary, thus achieving high precision in the comparison of sample and reference gases. The system allows simultaneous measurement of Ar/N-2, O-2/N, and CO2/N-2 ratios. The system achieves a short-term precision in Ar/N-2 of 10 per meg for a 10 s integration, which can be averaged to achieve an internal precision of a few per meg in the comparison of reference gases. Results for Ar/N-2 are reported from flasks samples collected from nine stations in a north-to-south global network over about a 1 yr period. The imprecision on an individual flask, as estimated from replicate agreement, is 11 per meg. This imprecision is dominated by real variability between samples at the time of analysis. Seasonal cycles are marginally resolved at the extra-tropical stations with amplitudes of 5 to 15 per meg. Annual-mean values are constant between stations to within 5 per meg. The results are compared with a numerical simulation of the cycles and gradients in Ar/N-2 based on the TM2 tracer transport model in combination with air-sea Ar and N-2 fluxes derived from climatological air-sea heat fluxes. The possibility is suggested that Ar/N-2 ratios may be detectably enriched near the ground by gravimetric or thermal fractionation under conditions of strong surface inversions.

2001
Garcia, HE, Keeling RF.  2001.  On the global oxygen anomaly and air-sea flux. Journal of Geophysical Research-Oceans. 106:31155-31166.   10.1029/1999jc000200   AbstractWebsite

We present a new climatology of monthly air-sea oxygen fluxes throughout the ice-free surface global ocean. The climatology is based on weighted linear least squares regressions using heat flux monthly anomalies for spatial and temporal interpolation of historical O-2 data. The seasonal oceanic variations show that the tropical belt (20degreesS-20degreesN) is characterized by relatively small air-sea fluxes when compared to the middle to high latitudes (40degrees-70degrees). The largest and lowest seasonal fluxes occur during summer and winter in both hemispheres. By means of an atmospheric transport model we show that our climatology is in better agreement with the observed amplitude and phasing of the variations in atmospheric O-2/N-2 ratios because of seasonal air-sea exchanges at baseline stations in the Pacific Ocean than with previous air-sea O-2 climatologies. Our study indicates that the component of the air-sea O-2 flux that correlates with heat flux dominates the large-scale air-sea O-2 exchange on seasonal timescales. The contribution of each major oceanic basin to the atmospheric observations is described. The seasonal net thermal (SNOT) and biological (SNOB) outgassing components of the flux are examined in relation to latitudinal bands, basin-wide, and hemispheric contributions. The Southern Hemisphere's SNOB (similar to0.26 Pmol) and SNOT (similar to0.29 Pmol) values are larger than the Northern Hemisphere's SNOB (similar to0.15 Pmol) and SNOT (similar to0.16 Pmol) values (1 Pmol = 10(15) mol). We estimate a global extratropical carbon new production during the outgassing season of 3.7 Pg C (1 Pg = 10(15) g), lower than previous estimates with air-sea O-2 climatologies.

2000
Najjar, RG, Keeling RF.  2000.  Mean annual cycle of the air-sea oxygen flux: A global view. Global Biogeochemical Cycles. 14:573-584.   10.1029/1999gb900086   AbstractWebsite

A global monthly-mean climatology of the air-sea oxygen flux is presented and discussed. The climatology is based on the ocean oxygen climatology of Najjar and Keeling [1997] and wind speeds derived from a meteorological analysis center. Seasonal variations are characterized by outgassing of oxygen during spring and summer and ingassing of oxygen during fall and winter, a pattern consistent with thermal and biological forcing of the air-sea oxygen flux. The annual mean flux pattern is characterized by ingassing at high latitudes and the tropics and outgassing in middle latitudes. The air-sea oxygen flux is shown to exhibit patterns that agree well with patterns seen in a marine primary productivity climatology, in model generated air-sea O-2 fluxes, in estimates of remineralization in the shallow aphotic zone based on seasonal oxygen variations, in observed seasonal nutrient-temperature relationships, and in independent estimates of meridional oxygen transport in the Atlantic ocean. We also find that extratropical mixed layer new production during the spring-summer period, computed from biological seasonal net outgassing of oxygen, is equivalent to the production of 4.5-5.6 Gt C, much lower than previous estimates based on atmospheric O-2/N-2 measurements.