Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Resplandy, L, Keeling RF, Rodenbeck C, Stephens BB, Khatiwala S, Rodgers KB, Long MC, Bopp L, Tans PP.  2018.  Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport. Nature Geoscience. 11:504-+.   10.1038/s41561-018-0151-3   AbstractWebsite

Measurements of atmospheric CO2 concentration provide a tight constraint on the sum of the land and ocean sinks. This constraint has been combined with estimates of ocean carbon flux and riverine transport of carbon from land to oceans to isolate the land sink. Uncertainties in the ocean and river fluxes therefore translate into uncertainties in the land sink. Here, we introduce a heat-based constraint on the latitudinal distribution of ocean and river carbon fluxes, and reassess the partition between ocean, river and land in the tropics, and in the southern and northern extra-tropics. We show that the ocean overturning circulation and biological pump tightly link the ocean transports of heat and carbon between hemispheres. Using this coupling between heat and carbon, we derive ocean and river carbon fluxes compatible with observational constraints on heat transport. This heat-based constraint requires a 20-100% stronger ocean and river carbon transport from the Northern Hemisphere to the Southern Hemisphere than existing estimates, and supports an upward revision of the global riverine carbon flux from 0.45 to 0.78 PgC yr(-1). These systematic biases in existing ocean/river carbon fluxes redistribute up to 40% of the carbon sink between northern, tropical and southern land ecosystems. As a consequence, the magnitude of both the southern land source and the northern land sink may have to be substantially reduced.

2014
Le Quere, C, Peters GP, Andres RJ, Andrew RM, Boden TA, Ciais P, Friedlingstein P, Houghton RA, Marland G, Moriarty R, Sitch S, Tans P, Arneth A, Arvanitis A, Bakker DCE, Bopp L, Canadell JG, Chini LP, Doney SC, Harper A, Harris I, House JI, Jain AK, Jones SD, Kato E, Keeling RF, Goldewijk KK, Kortzinger A, Koven C, Lefevre N, Maignan F, Omar A, Ono T, Park GH, Pfeil B, Poulter B, Raupach MR, Regnier P, Rodenbeck C, Saito S, Schwinger J, Segschneider J, Stocker BD, Takahashi T, Tilbrook B, van Heuven S, Viovy N, Wanninkhof R, Wiltshire A, Zaehle S.  2014.  Global carbon budget 2013. Earth System Science Data. 6:235-263.   10.5194/essd-6-235-2014   AbstractWebsite

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (E-FF) are based on energy statistics, while emissions from land-use change (E-LUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G(ATM)) is computed from the annual changes in concentration. The mean ocean CO2 sink (S-OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (S-LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2 and land cover change (some including nitrogen-carbon interactions). All uncertainties are reported as +/- 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003-2012), E-FF was 8.6 +/- 0.4 GtC yr(-1), E-LUC 0.9 +/- 0.5 GtC yr(-1), G(ATM) 4.3 +/- 0.1 GtC yr(-1), S-OCEAN 2.5 +/- 0.5 GtC yr(-1), and S-LAND 2.8 +/- 0.8 GtC yr(-1). For year 2012 alone, E-FF grew to 9.7 +/- 0.5 GtC yr(-1), 2.2% above 2011, reflecting a continued growing trend in these emissions, GATM was 5.1 +/- 0.2 GtC yr(-1), S-OCEAN was 2.9 +/- 0.5 GtC yr(-1), and assuming an E-LUC of 1.0 +/- 0.5 GtC yr(-1) (based on the 2001-2010 average), S-LAND was 2.7 +/- 0.9 GtC yr(-1). G(ATM) was high in 2012 compared to the 2003-2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 concentration reached 392.52 +/- 0.10 ppm averaged over 2012. We estimate that E-FF will increase by 2.1% (1.1-3.1 %) to 9.9 +/- 0.5 GtC in 2013, 61% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 535 +/- 55 GtC for 1870-2013, about 70% from E-FF (390 +/- 20 GtC) and 30% from E-LUC (145 +/- 50 GtC). This paper also documents any changes in the methods and data sets used in this new carbon budget from previous budgets (Le Quere et al., 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi: 10.3334/CDIAC/GCP_2013_V2.3).

2012
Tanhua, T, Keeling RF.  2012.  Changes in column inventories of carbon and oxygen in the Atlantic Ocean. Biogeosciences. 9:4819-4833.   10.5194/bg-9-4819-2012   AbstractWebsite

Increasing concentrations of dissolved inorganic carbon (DIC) in the interior ocean are expected as a direct consequence of increasing concentrations of CO2 in the atmosphere. This extra DIC is often referred to as anthropogenic carbon (C-ant), and its inventory, or increase rate, in the interior ocean has previously been estimated by a multitude of observational approaches. Each of these methods is associated with hard to test assumptions since C-ant cannot be directly observed. Results from a simpler concept with fewer assumptions applied to the Atlantic Ocean are reported on here using two large data collections of carbon relevant bottle data. The change in column inventory on decadal time scales, i.e. the storage rate, of DIC, respiration compensated DIC and oxygen is calculated for the Atlantic Ocean. We report storage rates and the confidence intervals of the mean trend at the 95% level (CI), reflecting the mean trend but not considering potential biasing effects of the spatial and temporal sampling. For the whole Atlantic Ocean the mean trends for DIC and oxygen are non-zero at the 95% confidence level: DIC: 0.86 (CI: 0.72-1.00) and oxygen: -0.24 (CI: -0.41-(-0.07)) mol m(-2) yr(-1). For oxygen, the whole Atlantic trend is dominated by the subpolar North Atlantic, whereas for other regions the O-2 trends are not significant. The storage rates are similar to changes found by other studies, although with large uncertainty. For the subpolar North Atlantic the storage rates show significant temporal and regional variation of all variables. This seems to be due to variations in the prevalence of subsurface water masses with different DIC and oxygen concentrations leading to sometimes different signs of storage rates for DIC compared to published C-ant estimates. This study suggest that accurate assessment of the uptake of CO2 by the oceans will require accounting not only for processes that influence C-ant but also additional processes that modify CO2 storage.

2009
Reid, PC, Fischer AC, Lewis-Brown E, Meredith MP, Sparrow M, Andersson AJ, Antia A, Bates NR, Bathmann U, Beaugrand G, Brix H, Dye S, Edwards M, Furevik T, Gangsto R, Hatun H, Hopcroft RR, Kendall M, Kasten S, Keeling R, Le Quere C, Mackenzie FT, Malin G, Mauritzen C, Olafsson J, Paull C, Rignot E, Shimada K, Vogt M, Wallace C, Wang ZM, Washington R.  2009.  Impacts of the Oceans on Climate Change. Advances in Marine Biology. 56( Sims DW, Ed.).:1-150., San Diego: Elsevier Academic Press Inc   10.1016/s0065-2881(09)56001-4   Abstract

The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the world there has been an accelerating change in sea temperatures over the last few decades, which has contributed to rising sea-level. The oceans are also the main store of carbon dioxide (CO(2)), and are estimated to have taken up similar to 40% of anthropogenic-sourced CO(2) from the atmosphere since the beginning of the industrial revolution. A proportion of the carbon uptake is exported via the four ocean 'carbon pumps' (Solubility, Biological, Continental Shelf and Carbonate Counter) to the deep ocean reservoir. Increases in sea temperature and changing planktonic systems and ocean currents may lead to a reduction in the uptake of CO(2) by the ocean; some evidence suggests a suppression of parts of the marine carbon sink is already underway. While the oceans have buffered climate change through the uptake of CO(2) produced by fossil fuel burning this has already had an impact on ocean chemistry through ocean acidification and will continue to do so. Feedbacks to climate change from acidification may result from expected impacts on marine organisms (especially corals and calcareous plankton), ecosystems and biogeochemical cycles. The polar regions of the world are showing the most rapid responses to climate change. As a result of a strong ice-ocean influence, small changes in temperature, salinity and ice cover may trigger large and sudden changes in regional climate with potential downstream feedbacks to the climate of the rest of the world. A warming Arctic Ocean may lead to further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO(2) and limit temperature rise over the next century will be underestimated.