Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2002
Keeling, RF, Garcia HE.  2002.  The change in oceanic O2 inventory associated with recent global warming. Proceedings of the National Academy of Sciences of the United States of America. 99:7848-7853.   10.1073/pnas.122154899   AbstractWebsite

Oceans general circulation models predict that global warming may cause a decrease in the oceanic O-2 inventory and an associated O-2 outgassing. An independent argument is presented here in support of this prediction based on observational evidence of the ocean's biogeochemical response to natural warming. On time scales from seasonal to centennial, natural O-2 flux/heat flux ratios are shown to occur in a range of 2 to 10 nmol of O-2 per joule of warming, with larger ratios typically occurring at higher latitudes and overlongertime scales. The ratios are several times larger than would be expected solely from the effect of heating on the O-2 solubility, indicating that most of the O-2 exchange is biologically mediated through links between heating and stratification. The change in oceanic O-2 inventory through the 1990s is estimated to be 0.3 +/- 0.4 X 10(14) mol of O-2 per year based on scaling the observed anomalous long-term ocean warming by natural O-2 flux/heating ratios and allowing for uncertainty due to decadal variability. Implications are discussed for carbon budgets based on observed changes in atmospheric O-2/N-2 ratio and based on observed changes in ocean dissolved inorganic carbon.

Keeling, RF.  2002.  On the freshwater forcing of the thermohaline circulation in the limit of low diapycnal mixing. Journal of Geophysical Research-Oceans. 107   10.1029/2000jc000685   AbstractWebsite

[1] A conjecture is offered on the stability characteristics of the thermohaline circulation in the limit of very low diapycnal mixing. In this limit the action of the winds on the Antarctic Circumpolar Current (ACC) can sustain a deep overturning pattern known as the "reconfigured conveyor,'' consisting of upwelling around Antarctica and sinking in the North Atlantic, as shown by the work of Toggweiler and others. It is conjectured that in this limit, northern sinking should be stabilized in an "on'' state because of the penetration of freshwater into the ocean interior via isopycnal layers that outcrop to the surface within and south of the ACC. This conjecture is supported by qualitative arguments and by a hydraulic model for the reconfigured conveyor. The hydraulic model takes into account the freshwater budgets of the Atlantic basin, Antarctic surface waters, and the remaining oceans. It also takes into account, in simple terms, wind-driven Antarctic upwelling, eddy transports and mixing within the ACC, changes in pycnocline depth, the role of temperature forcing, and advective feedbacks on salinity. The hydraulic model suggests that multiple "on/off'' states of the reconfigured conveyor are possible but only if the deep waters that form in the Northern Hemisphere are fresher than the intermediate waters that form in the vicinity of the ACC in the Southern Hemisphere, a condition that is not satisfied in the modern ocean.

2001
Keeling, RF, Stephens BB.  2001.  Antarctic sea ice and the control of Pleistocene climate instability (vol 16, pg 112, 2001). Paleoceanography. 16:330-334.   10.1029/2001pa000648   AbstractWebsite

In the paper “Antarctic sea ice and the control of Pleistocene climate instability” by Ralph F. Keeling and Britton B. Stephens (Paleoceanography, 16(1), 112-131,2001), approximately 10 paragraphs from section 5 and Appendix A were inadvertently omitted. The end of the paper from section 5 through the references, including Appendix A and Figure A1, appear below.

Keeling, RF, Stephens BB.  2001.  Antarctic sea ice and the control of Pleistocene climate instability. Paleoceanography. 16:112-131,330-334.   10.1029/2000pa000529   Abstract

A hypothesis is presented for the origin of Pleistocene climate instability, based on expansion of Antarctic sea ice and associated changes in the oceans' salinity structure. The hypothesis assumes that thermohaline overturning is dominated by the reconfigured conveyor of Toggweiler and Samuels [1993b], in which deepwater upwelling is restricted to high southern latitudes. The reconfigured conveyor is shown to be potentially stabilized in an "on" mode by precipitation at high southern latitudes and potentially destabilized into "on" and "off" modes by the counteracting influence of Antarctic sea ice. The mechanism is clarified by the use of a hydraulic analogue. We hypothesize that this mechanism accounts for dominant patterns of thermohaline overturning and climate instability between Pleistocene warm and cold periods. The hypothesis is shown to be consistent with a range of paleoceanographic evidence and to potentially account for details of observed rapid climate changes during glacial and interglacial periods, including aspects of interhemispheric timing.