Export 11 results:
Sort by: Author Title Type [ Year  (Desc)]
Yadav, V, Duren R, Mueller K, Verhulst KR, Nehrkorn T, Kim J, Weiss RF, Keeling R, Sander S, Fischer ML, Newman S, Falk M, Kuwayama T, Hopkins F, Rafiq T, Whetstone J, Miller C.  2019.  Spatio-temporally resolved methane fluxes from the Los Angeles megacity. Journal of Geophysical Research-Atmospheres. 124:5131-5148.   10.1029/2018jd030062   AbstractWebsite

We combine sustained observations from a network of atmospheric monitoring stations with inverse modeling to uniquely obtain spatiotemporal (3-km, 4-day) estimates of methane emissions from the Los Angeles megacity and the broader South Coast Air Basin for 2015-2016. Our inversions use customized and validated high-fidelity meteorological output from Weather Research Forecasting and Stochastic Time-Inverted Lagrangian model for South Coast Air Basin and innovatively employ a model resolution matrix-based metric to disentangle the spatiotemporal information content of observations as manifested through estimated fluxes. We partially track and constrain fluxes from the Aliso Canyon natural gas leak and detect closure of the Puente Hills landfill, with no prior information. Our annually aggregated fluxes and their uncertainty excluding the Aliso Canyon leak period lie within the uncertainty bounds of the fluxes reported by the previous studies. Spatially, major sources of CH4 emissions in the basin were correlated with CH4-emitting infrastructure. Temporally, our findings show large seasonal variations in CH4 fluxes with significantly higher fluxes in winter in comparison to summer months, which is consistent with natural gas demand and anticorrelated with air temperature. Overall, this is the first study that utilizes inversions to detect both enhancement (Aliso Canyon leak) and reduction (Puente Hills) in CH4 fluxes due to the unintended events and policy decisions and thereby demonstrates the utility of inverse modeling for identifying variations in fluxes at fine spatiotemporal resolution.

Rodenbeck, C, Zaehle S, Keeling R, Heimann M.  2018.  History of El Nino impacts on the global carbon cycle 1957-2017: a quantification from atmospheric CO2 data. Philosophical Transactions of the Royal Society B-Biological Sciences. 373   10.1098/rstb.2017.0303   AbstractWebsite

Interannual variations in the large-scale net ecosystem exchange (NEE) of CO2 between the terrestrial biosphere and the atmosphere were estimated for 1957-2017 from sustained measurements of atmospheric CO2 mixing ratios. As the observations are sparse in the early decades, available records were combined into a 'quasi-homogeneous' dataset based on similarity in their signals, to minimize spurious variations from beginning or ending data records. During El Nino events, CO2 is anomalously released from the tropical band, and a few months later also in the northern extratropical band. This behaviour can approximately be represented by a linear relationship of the NEE anomalies and local air temperature anomalies, with sensitivity coefficients depending on geographical location and season. The apparent climate sensitivity of global total NEE against variations in pan-tropically averaged annual air temperature slowly changed over time during the 1957-2017 period, first increasing (though less strongly than in previous studies) but then decreasing again. However, only part of this change can be attributed to actual changes in local physiological or ecosystem processes, the rest probably arising from shifts in the geographical area of dominating temperature variations. This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Nino on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.

Rodgers, KB, Aumont O, Fletcher SEM, Plancherel Y, Bopp L, Montegut CD, Iudicone D, Keeling RF, Madec G, Wanninkhof R.  2014.  Strong sensitivity of Southern Ocean carbon uptake and nutrient cycling to wind stirring. Biogeosciences. 11:4077-4098.   10.5194/bg-11-4077-2014   AbstractWebsite

Here we test the hypothesis that winds have an important role in determining the rate of exchange of CO2 between the atmosphere and ocean through wind stirring over the Southern Ocean. This is tested with a sensitivity study using an ad hoc parameterization of wind stirring in an ocean carbon cycle model, where the objective is to identify the way in which perturbations to the vertical density structure of the planetary boundary in the ocean impacts the carbon cycle and ocean biogeochemistry. Wind stirring leads to reduced uptake of CO2 by the Southern Ocean over the period 2000-2006, with a relative reduction with wind stirring on the order of 0.9 Pg C yr(-1) over the region south of 45 degrees S. This impacts not only the mean carbon uptake, but also the phasing of the seasonal cycle of carbon and other ocean biogeochemical tracers. Enhanced wind stirring delays the seasonal onset of stratification, and this has large impacts on both entrainment and the biological pump. It is also found that there is a strong reduction on the order of 25-30% in the concentrations of NO3 exported in Subantarctic Mode Water (SAMW) to wind stirring. This finds expression not only locally over the Southern Ocean, but also over larger scales through the impact on advected nutrients. In summary, the large sensitivity identified with the ad hoc wind stirring parameterization offers support for the importance of wind stirring for global ocean biogeochemistry through its impact over the Southern Ocean.

Graven, HD, Guilderson TP, Keeling RF.  2012.  Observations of radiocarbon in CO2 at seven global sampling sites in the Scripps flask network: Analysis of spatial gradients and seasonal cycles. Journal of Geophysical Research-Atmospheres. 117   10.1029/2011jd016535   AbstractWebsite

High precision measurements of Delta C-14 were conducted for monthly samples of CO2 from seven global stations over 2- to 16-year periods ending in 2007. Mean Delta C-14 over 2005-07 in the Northern Hemisphere was 5 parts per thousand lower than Delta C-14 in the Southern Hemisphere, similar to recent observations from I. Levin. This is a significant shift from 1988-89 when Delta C-14 in the Northern Hemisphere was slightly higher than the South. The influence of fossil fuel CO2 emission and transport was simulated for each of the observation sites by the TM3 atmospheric transport model and compared to other models that participated in the Transcom 3 Experiment. The simulated interhemispheric gradient caused by fossil fuel CO2 emissions was nearly the same in both 1988-89 and 2005-07, due to compensating effects from rising emissions and decreasing sensitivity of Delta C-14 to fossil fuel CO2. The observed 5 parts per thousand shift must therefore have been caused by non-fossil influences, most likely due to changes in the air-sea C-14 flux in the Southern Ocean. Seasonal cycles with higher Delta C-14 in summer or fall were evident at most stations, with largest amplitudes observed at Point Barrow (71 degrees N) and La Jolla (32 degrees N). Fossil fuel emissions do not account for the seasonal cycles of Delta C-14 in either hemisphere, indicating strong contributions from non-fossil influences, most likely from stratosphere-troposphere exchange.

Keeling, CD, Piper SC, Whorf TP, Keeling RF.  2011.  Evolution of natural and anthropogenic fluxes of atmospheric CO2 from 1957 to 2003. Tellus Series B-Chemical and Physical Meteorology. 63:1-22.   10.1111/j.1600-0889.2010.00507.x   AbstractWebsite

An analysis is carried out of the longest available records of atmospheric CO(2) and its 13C/12C ratio from the Scripps Institution of Oceanography network of fixed stations, augmented by data in the 1950s and 1960s from ships and ice floes. Using regression analysis, we separate the interhemispheric gradients of CO(2) and 13C/12C into: (1) a stationary (possibly natural) component that is constant with time, and (2) a time-evolving component that increases in proportion to fossil fuel emissions. Inverse calculations using an atmospheric transport model are used to interpret the components of the gradients in terms of land and ocean sinks. The stationary gradients in CO(2) and 13C/12C are both satisfactorily explained by ocean processes, including an ocean carbon loop that transports 0.5 PgC yr-1 southwards in the ocean balanced by an atmospheric return flow. A stationary northern land sink appears to be ruled out unless its effect on the gradient has been offset by a strong rectifier effect, which seems doubtful. A growing northern land sink is not ruled out, but has an uncertain magnitude (0.3-1.7 PgC yr-1 centred on year 2003) dependent on the rate at which CO(2) from fossil fuel burning is dispersed vertically and between hemispheres.

Rodenbeck, C, Le Quere C, Heimann M, Keeling RF.  2008.  Interannual variability in oceanic biogeochemical processes inferred by inversion of atmospheric O2/N2 and CO2 data. Tellus Series B-Chemical and Physical Meteorology. 60:685-705.   10.1111/j.1600-0889.2008.00375.x   AbstractWebsite

Atmospheric measurements of O(2)/N(2) and CO(2) at up to nine sites have been used to infer the interannual variations in oceanic O(2) exchange with an inverse method. The method distinguishes the regional contributions of three latitudinal bands, partly the individual contributions of the North Pacific and the North Atlantic also. The interannual variations of the inferred O(2) fluxes in the tropical band correlate significantly with the El Nino/Southern Oscillation. Tropical O(2) variations appear to be dominated by the ventilation of the O(2) minimum zone from variations in Pacific equatorial upwelling. The interannual variations of the northern and southern extratropical bands are of similar amplitude, though the attribution to mechanisms is less clear. The interannual variations estimated by the inverse method are larger than those estimated by the current generation of global ocean biogeochemistry models, especially in the North Atlantic, suggesting that the representation of biological processes plays a role. The comparison further suggests that O(2) variability is a more stringent test to validate models than CO(2) variability, because the processes driving O(2) variability combine in the same direction and amplify the underlying climatic signal.

Battle, M, Fletcher SEM, Bender ML, Keeling RF, Manning AC, Gruber N, Tans PP, Hendricks MB, Ho DT, Simonds C, Mika R, Paplawsky B.  2006.  Atmospheric potential oxygen: New observations and their implications for some atmospheric and oceanic models. Global Biogeochemical Cycles. 20   10.1029/2005gb002534   AbstractWebsite

[ 1] Measurements of atmospheric O(2)/N(2) ratios and CO(2) concentrations can be combined into a tracer known as atmospheric potential oxygen (APO approximate to O(2)/N(2) + CO(2)) that is conservative with respect to terrestrial biological activity. Consequently, APO reflects primarily ocean biogeochemistry and atmospheric circulation. Building on the work of Stephens et al. ( 1998), we present a set of APO observations for the years 1996 - 2003 with unprecedented spatial coverage. Combining data from the Princeton and Scripps air sampling programs, the data set includes new observations collected from ships in the low-latitude Pacific. The data show a smaller interhemispheric APO gradient than was observed in past studies, and different structure within the hemispheres. These differences appear to be due primarily to real changes in the APO field over time. The data also show a significant maximum in APO near the equator. Following the approach of Gruber et al. ( 2001), we compare these observations with predictions of APO generated from ocean O(2) and CO(2) flux fields and forward models of atmospheric transport. Our model predictions differ from those of earlier modeling studies, reflecting primarily the choice of atmospheric transport model (TM3 in this study). The model predictions show generally good agreement with the observations, matching the size of the interhemispheric gradient, the approximate amplitude and extent of the equatorial maximum, and the amplitude and phasing of the seasonal APO cycle at most stations. Room for improvement remains. The agreement in the interhemispheric gradient appears to be coincidental; over the last decade, the true APO gradient has evolved to a value that is consistent with our time-independent model. In addition, the equatorial maximum is somewhat more pronounced in the data than the model. This may be due to overly vigorous model transport, or insufficient spatial resolution in the air-sea fluxes used in our modeling effort. Finally, the seasonal cycles predicted by the model of atmospheric transport show evidence of an excessive seasonal rectifier in the Aleutian Islands and smaller problems elsewhere.

Manning, AC, Keeling RF, Katz LE, Paplawsky WJ, McEvoy EM.  2003.  Interpreting the seasonal cycles of atmospheric oxygen and carbon dioxide concentrations at American Samoa Observatory. Geophysical Research Letters. 30   10.1029/2001gl014312   AbstractWebsite

We present seven years of atmospheric O-2/N-2 ratio and CO2 concentration data measured from flask samples collected at American Samoa. These data are unusual, exhibiting higher short-term variability, and seasonal cycles not in phase with other sampling stations. The unique nature of atmospheric data from Samoa has been noted previously from measurements of CO2, methyl chloroform, and ozone. With our O-2 data, we observe greater magnitude in the short-term variability, but, in contrast, no clear seasonal pattern to this variability. This we attribute to significant regional sources and sinks existing for O-2 in both hemispheres, and a dependence on both the latitudinal and altitudinal origins of air masses. We also hypothesize that some samples exhibit a component of "older'' air, demonstrating recirculation of air within the tropics. Our findings could be used to help constrain atmospheric transport models which are not well characterized in tropical regions.

Stephens, BB, Keeling RF, Heimann M, Six KD, Murnane R, Caldeira K.  1998.  Testing global ocean carbon cycle models using measurements of atmospheric O2 and CO2 concentration. Global Biogeochemical Cycles. 12:213-230.   10.1029/97gb03500   AbstractWebsite

We present a method for testing the performance of global ocean carbon cycle models using measurements of atmospheric O-2 and CO2 concentration. We combine these measurements to define a tracer, atmospheric potential oxygen (APO approximate to O-2 + CO2), which is conservative with respect to terrestrial photosynthesis and respiration. We then compare observations of APO to the simulations of an atmospheric transport model which uses ocean-model air-sea fluxes and fossil fuel combustion estimates as lower boundary conditions. We present observations of the annual-average concentrations of CO2, O-2, and APO at 10 stations in a north-south transect. The observations of APO show a significant interhemispheric gradient decreasing towards the north. We use air-sea CO2, O-2, and N-2 fluxes from the Princeton ocean biogeochemistry model, the Hamburg model of the ocean carbon cycle, and the Lawrence Livermore ocean biogeochemistry model to drive the TM2 atmospheric transport model. The latitudinal variations in annual-average APO predicted by the combined models are distinctly different from the observations. All three models significantly underestimate the interhemispheric difference in APO, suggesting that they underestimate the net southward transport of the sum of O-2 and CO2 in the oceans. Uncertainties in the model-observation comparisons include uncertainties associated with the atmospheric measurements, the atmospheric transport model, and the physical and biological components of the ocean models. Potential deficiencies in the physical components of the ocean models, which have previously been suggested as causes for anomalously large heat fluxes out of the Southern Ocean, may contribute to the discrepancies with the APO observations. These deficiencies include the inadequate parameterization of subgrid-scale isopycnal eddy mixing, a lack of subgrid-scale vertical convection, too much Antarctic sea-ice formation, and an overestimation of vertical diffusivities in the main thermocline.

Keeling, RF, Piper SC, Heimann M.  1996.  Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature. 381:218-221.   10.1038/381218a0   AbstractWebsite

THE global budget for sources and sinks of anthropogenic CO2 has been found to be out of balance unless the oceanic sink is supplemented by an additional 'missing sink', plausibly associated with land biota(1,25). A similar budgeting problem has been found for the Northern Hemisphere alone(2,3), suggesting that northern land biota may be the sought-after sink, although this interpretation is not unique(2-5); to distinguish oceanic and land carbon uptake, the budgets rely variously, and controversially, on ocean models(2,6,7), (CO2)-C-13/(CO2)-C-12 data(2,4,5), sparse oceanic observations of p(CO2) (ref. 3) or C-13/C-12 ratios of dissolved inorganic carbon, (4,5,8) or single-latitude trends in atmospheric O-2 as detected from changes in O-2/N-2 ratio.(9,10). Here we present an extensive O-2/N-2 data set which shows simultaneous trends in O-2/N-2 in both northern and southern hemispheres and allows the O-2/N-2 gradient between the two hemispheres to be quantified. The data are consistent with a budget in which, for the 1991-94 period, the global oceans and the northern land biota each removed the equivalent of approximately 30% of fossil-fuel CO2 emissions, while the tropical land biota as a whole were not a strong source or sink.

Severinghaus, JP, Bender ML, Keeling RF, Broecker WS.  1996.  Fractionation of soil gases by diffusion of water vapor, gravitational settling, and thermal diffusion. Geochimica Et Cosmochimica Acta. 60:1005-1018.   10.1016/0016-7037(96)00011-7   AbstractWebsite

Air sampled from the moist unsaturated zone in a sand dune exhibits depletion in the heavy isotopes of N-2 and O-2. We propose that the depletion is caused by a diffusive flux of water vapor out of the dune, which sweeps out the other gases, forcing them to diffuse back into the dune. The heavy isotopes of N-2 and O-2 diffuse back more slowly, resulting in a steady-state depletion of the heavy isotopes in the dune interior. We predict the effect's magnitude with molecular diffusion theory and reproduce it in a laboratory simulation, finding good agreement between field, theory, and lab. The magnitude of the effect is governed by the ratio of the binary diffusivities against water vapor of a pair of gases, and increases similar to linearly with the difference between the water vapor mole fraction of the site and the advectively mixed reservoir with which it is in diffusive contact (in most cases the atmosphere). The steady-state effect is given by delta(i) = [i/j/i(0)/j(0) - 1] 10(3) parts per thousand congruent to [(1 - x(H2O)/1 - x(H2O0))((Dj-H2O/Di-H2O)-1) -1] 10(3) parts per thousand, where delta(i) is the fractional deviation in permil of the gas i/gas j ratio from the advectively mixed reservoir, x(H2O) and x(H2O0) are respectively the mole fractions of water vapor at the site and in the advectively mixed reservoir, and D-i-H2O is the binary diffusion coefficient of gas i with water vapor. The effect is independent of scale at steady state, but approaches steady state with the time constant of diffusion set by the length scale. Exploiting the mechanism, we make an experimental estimate of the relative diffusivities of O-2 and N-2 against water vapor, finding that O-2 diffuses 3.6 +/- 0.3% faster than N-2 despite its greater mass. We also confirm in the study dune the presence of two additional known processes: gravitational fractionation, heretofore seen only in the unconsolidated firn of polar ice sheets, and thermal diffusion, well described in laboratory studies but not seen previously in nature. We predict that soil gases in general will exhibit the three effects described here, the water vapor flux fractionation effect, gravitational fractionation, and thermal diffusion. However, our analysis neglects Knudsen diffusion and thus may be inapplicable to fine-grained soils.