Publications

Export 27 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M [N] O P Q R S T U V W X Y Z   [Show ALL]
A
Najjar, RG, Keeling RF.  1997.  Analysis of the mean annual cycle of the dissolved oxygen anomaly in the World Ocean. Journal of Marine Research. 55:117-151.   10.1357/0022240973224481   AbstractWebsite

A global climatology of the dissolved oxygen anomaly (the excess over saturation) is created with monthly resolution in the upper 500 m of the ocean. The climatology is based on dissolved oxygen, temperature and salinity data archived at the National Oceanographic Data Center. Examination of this climatology reveals statistically significant annual cycles throughout the upper 500 m of the World Ocean, though seasonal variations are most coherent in the North Atlantic, where data density is greatest. Vertical trends in the phase and amplitude of the annual cycle are noted. The cycle in surface waters is characterized by a summer maximum and a winter minimum, consistent with warming and high rates of photosynthesis during the summer, and cooling and entrainment of oxygen-depleted water during the winter. In low and middle latitudes, the amplitude increases with depth and the maximum occurs later in the year, a trend consistent with the seasonal accumulation of oxygen associated with the shallow oxygen maximum. At a depth that varies between about 30 and 130 m, the phase of the annual cycle undergoes an abrupt shift. We call this depth the oxygen nodal depth. Below the nodal depth, the annual cycle is characterized by an early-spring maximum and a late-fall minimum, consistent with a cycle dominated by respiration during the spring and summer and replenishment of oxygen from the atmosphere by ventilation during the fall and winter. Below the nodal depth, the amplitude of the annual cycle generally decreases with depth, indicative of decreasing respiration and ventilation rates, or less seasonality in both processes. We postulate that the nodal depth in middle and high latitudes corresponds closely to the summertime compensation depth, where photosynthesis and net community respiration are equal. With this interpretation of the nodal depth and a simple model of the penetration of light in the water column, a compensation light intensity of 1 W m(-2) (4 mu E m(-2) s(-1)) is deduced, at the low end of independent estimates. Horizontal trends in the phase and amplitude of the annual cycle are also noted. We find that the nodal depth decreases toward the poles in both hemispheres and is generally greater in the Southern Hemisphere, patterns found to be consistent with light-based estimates of the compensation depth. The amplitude of the annual cycle in the oxygen anomaly increases monotonically with latitude, and higher latitudes lag lower latitudes. In the North Atlantic and North Pacific, the amplitude of the annual cycle tends to increase from east to west at all depths and latitudes, as expected considering that physical forcing has greater seasonal variability in the west. The tropics and the North Indian Ocean have features that distinguish them from other regions. Below about 75 m, these waters have pronounced annual cycles of the oxygen anomaly that areshown to be caused mainly by wind-driven adiabatic displacements of the thermocline. A semiannual cycle of the oxygen anomaly is found in the surface waters of the North Indian Ocean, consistent with the known semiannual cycle of surface heat flux in this region.

Graven, H, Fischer ML, Lueker T, Jeong S, Guilderson TP, Keeling RF, Bambha R, Brophy K, Callahan W, Cui X, Frankenberg C, Gurney KR, LaFranchi BW, Lehman SJ, Michelsen H, Miller JB, Newman S, Paplawsky W, Parazoo NC, Sloop C, Walker SJ.  2018.  Assessing fossil fuel CO2 emissions in California using atmospheric observations and models. Environmental Research Letters. 13   10.1088/1748-9326/aabd43   AbstractWebsite

Analysis systems incorporating atmospheric observations could provide a powerful tool for validating fossil fuel CO2 (ffCO(2)) emissions reported for individual regions, provided that fossil fuel sources can be separated from other CO2 sources or sinks and atmospheric transport can be accurately accounted for. We quantified ffCO(2) by measuring radiocarbon (C-14) in CO2, an accurate fossil-carbon tracer, at nine observation sites in California for three months in 2014-15. There is strong agreement between the measurements and ffCO(2) simulated using a high-resolution atmospheric model and a spatiotemporally-resolved fossil fuel flux estimate. Inverse estimates of total in-state ffCO(2) emissions are consistent with the California Air Resources Board's reported ffCO(2) emissions, providing tentative validation of California's reported ffCO(2) emissions in 2014-15. Continuing this prototype analysis system could provide critical independent evaluation of reported ffCO(2) emissions and emissions reductions in California, and the system could be expanded to other, more data-poor regions.

C
Verhulst, KR, Karion A, Kim J, Salameh PK, Keeling RF, Newman S, Miller J, Sloop C, Pongetti T, Rao P, Wong C, Hopkins FM, Yadav V, Weiss RF, Duren RM, Miller CE.  2017.  Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project - Part 1: calibration, urban enhancements, and uncertainty estimates. Atmospheric Chemistry and Physics. 17:8313-8341.   10.5194/acp-17-8313-2017   AbstractWebsite

We report continuous surface observations of carbon dioxide (CO2) and methane (CH4) from the Los Angeles (LA) Megacity Carbon Project during 2015. We devised a calibration strategy, methods for selection of background air masses, calculation of urban enhancements, and a detailed algorithm for estimating uncertainties in urban-scale CO2 and CH4 measurements. These methods are essential for understanding carbon fluxes from the LA megacity and other complex urban environments globally. We estimate background mole fractions entering LA using observations from four "extra-urban" sites including two "marine" sites located south of LA in La Jolla (LJO) and offshore on San Clemente Island (SCI), one "continental" site located in Victorville (VIC), in the high desert northeast of LA, and one "continental/mid-troposphere" site located on Mount Wilson (MWO) in the San Gabriel Mountains. We find that a local marine background can be established to within similar to 1 ppm CO2 and similar to 10 ppb CH4 using these local measurement sites. Overall, atmospheric carbon dioxide and methane levels are highly variable across Los Angeles. "Urban" and "suburban" sites show moderate to large CO2 and CH4 enhancements relative to a marine background estimate. The USC (University of Southern California) site near downtown LA exhibits median hourly enhancements of similar to 20 ppm CO2 and similar to 150 ppb CH4 during 2015 as well as similar to 15 ppm CO2 and similar to 80 ppb CH4 during mid-afternoon hours (12:00-16:00 LT, local time), which is the typical period of focus for flux inversions. The estimated measurement uncertainty is typically better than 0.1 ppm CO2 and 1 ppb CH4 based on the repeated standard gas measurements from the LA sites during the last 2 years, similar to Andrews et al. (2014). The largest component of the measurement uncertainty is due to the single-point calibration method; however, the uncertainty in the background mole fraction is much larger than the measurement uncertainty. The background uncertainty for the marine background estimate is similar to 10 and similar to 15% of the median mid-afternoon enhancement near downtown LA for CO2 and CH4, respectively. Overall, analytical and background uncertainties are small relative to the local CO2 and CH4 enhancements; however, our results suggest that reducing the uncertainty to less than 5% of the median mid-afternoon enhancement will require detailed assessment of the impact of meteorology on background conditions.

Lueker, TJ, Walker SJ, Vollmer MK, Keeling RF, Nevison CD, Weiss RF, Garcia HE.  2003.  Coastal upwelling air-sea fluxes revealed in atmospheric observations of O2/N2, CO2 and N2O. Geophysical Research Letters. 30   10.1029/2002gl016615   AbstractWebsite

[1] We capture water column ventilation resulting from coastal upwelling in continuous records of O-2/N-2, CO2, and N2O at Trinidad, California. Our records reveal the gas exchange response time of the ocean to the upwelling and ensuing biological production. Satellite and buoy wind data allow extrapolation of our records to assess coastal upwelling air-sea fluxes of O-2 and N2O. We improve on previous regional estimates of N2O flux in coastal and continental shelf region of the western U. S. We characterize the source of N2O as being predominately from nitrification based on the O-2/N2O emissions ratio observed in our atmospheric records.

E
Jeong, SG, Newman S, Zhang JS, Andrews AE, Bianco L, Bagley J, Cui XG, Graven H, Kim J, Salameh P, LaFranchi BW, Priest C, Campos-Pineda M, Novakovskaia E, Sloop CD, Michelsen HA, Bambha RP, Weiss RF, Keeling R, Fischer ML.  2016.  Estimating methane emissions in California's urban and rural regions using multitower observations. Journal of Geophysical Research-Atmospheres. 121:13031-13049.   10.1002/2016jd025404   AbstractWebsite

We present an analysis of methane (CH4) emissions using atmospheric observations from 13 sites in California during June 2013 to May 2014. A hierarchical Bayesian inversion method is used to estimate CH4 emissions for spatial regions (0.3 degrees pixels for major regions) by comparing measured CH4 mixing ratios with transport model (Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian Transport) predictions based on seasonally varying California-specific CH4 prior emission models. The transport model is assessed using a combination of meteorological and carbon monoxide (CO) measurements coupled with the gridded California Air Resources Board (CARB) CO emission inventory. The hierarchical Bayesian inversion suggests that state annual anthropogenic CH4 emissions are 2.42 +/- 0.49 Tg CH4/yr (at 95% confidence), higher (1.2-1.8 times) than the current CARB inventory (1.64 Tg CH4/yr in 2013). It should be noted that undiagnosed sources of errors or uncaptured errors in the model-measurement mismatch covariance may increase these uncertainty bounds beyond that indicated here. The CH4 emissions from the Central Valley and urban regions (San Francisco Bay and South Coast Air Basins) account for similar to 58% and 26% of the total posterior emissions, respectively. This study suggests that the livestock sector is likely the major contributor to the state total CH4 emissions, in agreement with CARB's inventory. Attribution to source sectors for subregions of California using additional trace gas species would further improve the quantification of California's CH4 emissions and mitigation efforts toward the California Global Warming Solutions Act of 2006 (Assembly Bill 32).

Nevison, CD, Keeling RF, Kahru M, Manizza M, Mitchell BG, Cassar N.  2012.  Estimating net community production in the Southern Ocean based on atmospheric potential oxygen and satellite ocean color data. Global Biogeochemical Cycles. 26   10.1029/2011gb004040   AbstractWebsite

The seasonal cycle of atmospheric potential oxygen (APO similar to O-2 + 1.1 CO2) reflects three seasonally varying ocean processes: 1) thermal in- and outgassing, 2) mixed layer net community production (NCP) and 3) deep water ventilation. Previous studies have isolated the net biological seasonal signal (i.e., the sum of NCP and ventilation), after using air-sea heat flux data to estimate the thermal signal. In this study, we resolve all three components of the APO seasonal cycle using a methodology in which the ventilation signal is estimated based on atmospheric N2O data, the thermal signal is estimated based on heat flux or atmospheric Ar/N-2 data, and the production signal is inferred as a residual. The isolation of the NCP signal in APO allows for direct comparison to estimates of NCP based on satellite ocean color data, after translating the latter into an atmospheric signal using an atmospheric transport model. When applied to ocean color data using algorithms specially adapted to the Southern Ocean and APO data at three southern monitoring sites, these two independent methods converge on a similar phase and amplitude of the seasonal NCP signal in APO and yield an estimate of annual mean NCP south of 50 degrees S of 0.8-1.2 Pg C/yr, with corresponding annual mean NPP of similar to 3 Pg C/yr and a mean growing season f ratio of similar to 0.33. These results are supported by ocean biogeochemistry model simulations, in which air-sea O-2 and N2O fluxes are resolved into component thermal, ventilation and (for O-2) NCP contributions.

Nevison, CD, Manizza M, Keeling RF, Stephens BB, Bent JD, Dunne J, Ilyina T, Long M, Resplandy L, Tjiputra J, Yukimoto S.  2016.  Evaluating CMIP5 ocean biogeochemistry and Southern Ocean carbon uptake using atmospheric potential oxygen: Present-day performance and future projection. Geophysical Research Letters. 43:2077-2085.   10.1002/2015gl067584   AbstractWebsite

Observed seasonal cycles in atmospheric potential oxygen (APO similar to O-2+1.1 CO2) were used to evaluate eight ocean biogeochemistry models from the Coupled Model Intercomparison Project (CMIP5). Model APO seasonal cycles were computed from the CMIP5 air-sea O-2 and CO2 fluxes and compared to observations at three Southern Hemisphere monitoring sites. Four of the models captured either the observed APO seasonal amplitude or phasing relatively well, while the other four did not. Many models had an unrealistic seasonal phasing or amplitude of the CO2 flux, which in turn influenced APO. By 2100 under RCP8.5, the models projected little change in the O-2 component of APO but large changes in the seasonality of the CO2 component associated with ocean acidification. The models with poorer performance on present-day APO tended to project larger net carbon uptake in the Southern Ocean, both today and in 2100.

G
Staudigel, H, Albarede F, Blichert-Toft J, Edmond J, McDonough B, Jacobsen SB, Keeling R, Langmuir CH, Nielsen RL, Plank T, Rudnick R, Shaw HF, Shirey S, Veizer J, White W.  1998.  Geochemical Earth Reference Model (GERM): description of the initiative. Chemical Geology. 145:153-159.   10.1016/S0009-2541(97)00141-1   Abstract

The Geochemical Earth Reference Model (GERM) initiative is a grass root effort with the goals of establishing a community consensus on a chemical characterization of the Earth, its major reservoirs, and the flu?;es between them. The GERM initiative will provide a review of available scientific constraints for: (1) the composition of all major chemical reservoirs of the present-day Earth, from core to atmosphere; (2) present-day fluxes between reservoirs; (3) the Earth's chemical and isotopic evolution since accretion; and (4) the chemical and isotopic evolution of seawater as a record of global tectonics and climate, Even though most of the constraints for the GERM will be drawn from chemical data sets, some data will have to come from other disciplines, such as geophysics, nuclear physics, and cosmochemistry. GERM also includes a diverse chemical and physical data base and computer codes that are useful for our understanding of how the Earth works as a dynamic chemical and physical system. The GERM initiative is developed in an open community discussion on the World Wide Web (http://www-ep.es.llnl.gov/germ/germ-home.html) that is moderated by editors with responsibilities for different reservoirs, fluxes, data bases, and other scientific or technical aspects. These editors have agreed to lay out an initial, strawman GERM for their respective sections and to moderate community discussions leading to a first, preliminary consensus. The development of the GERM began with an initial workshop in Lyon, France in March, 1996. Since then, the GERM has continued to be developed on the Internet, punctuated by workshops and special sessions at professional meetings. A second GERM workshop will be held in La Jolla, CA USA on March 10-13, 1998. (C) 1998 Elsevier Science B.V. All nights reserved.

Le Quere, C, Moriarty R, Andrew RM, Peters GP, Ciais P, Friedlingstein P, Jones SD, Sitch S, Tans P, Arneth A, Boden TA, Bopp L, Bozec Y, Canadell JG, Chini LP, Chevallier F, Cosca CE, Harris I, Hoppema M, Houghton RA, House JI, Jain AK, Johannessen T, Kato E, Keeling RF, Kitidis V, Goldewijk KK, Koven C, Landa CS, Landschutzer P, Lenton A, Lima ID, Marland G, Mathis JT, Metzl N, Nojiri Y, Olsen A, Ono T, Peng S, Peters W, Pfeil B, Poulter B, Raupach MR, Regnier P, Rodenbeck C, Saito S, Salisbury JE, Schuster U, Schwinger J, Seferian R, Segschneider J, Steinhoff T, Stocker BD, Sutton AJ, Takahashi T, Tilbrook B, van der Werf GR, Viovy N, Wang YP, Wanninkhof R, Wiltshire A, Zeng N.  2015.  Global carbon budget 2014. Earth System Science Data. 7:47-85.   10.5194/essd-7-47-2015   AbstractWebsite

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (E-FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (E-LUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G(ATM)) is computed from the annual changes in concentration. The mean ocean CO2 sink (S-OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S-OCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (S-LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004-2013), E-FF was 8.9 +/- 0.4 GtC yr(-1), E-LUC 0.9 +/- 0.5 GtC yr(-1), G(ATM) 4.3 +/- 0.1 GtC yr(-1), S-OCEAN 2.6 +/- 0.5 GtC yr(-1), and S-LAND 2.9 +/- 0.8 GtC yr(-1). For year 2013 alone, E-FF grew to 9.9 +/- 0.5 GtC yr(-1), 2.3% above 2012, continuing the growth trend in these emissions, E-LUC was 0.9 +/- 0.5 GtC yr(-1), G(ATM) was 5.4 +/- 0.2 GtC yr(-1), S-OCEAN was 2.9 +/- 0.5 GtC yr(-1), and S-LAND was 2.5 +/- 0.9 GtC yr(-1). G(ATM) was high in 2013, reflecting a steady increase in E-FF and smaller and opposite changes between S-OCEAN and S-LAND compared to the past decade (2004-2013). The global atmospheric CO2 concentration reached 395.31 +/- 0.10 ppm averaged over 2013. We estimate that E-FF will increase by 2.5% (1.3-3.5 %) to 10.1 +/- 0.6 GtC in 2014 (37.0 +/- 2.2 GtCO(2) yr(-1)), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of E-FF and assumed constant E-LUC for 2014, cumulative emissions of CO2 will reach about 545 +/- 55 GtC (2000 +/- 200 GtCO(2)) for 1870-2014, about 75% from E-FF and 25% from E-LUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quere et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).

Le Quere, C, Moriarty R, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Friedlingstein P, Peters GP, Andres RJ, Boden TA, Houghton RA, House JI, Keeling RF, Tans P, Arneth A, Bakker DCE, Barbero L, Bopp L, Chang J, Chevallier F, Chini LP, Ciais P, Fader M, Feely RA, Gkritzalis T, Harris I, Hauck J, Ilyina T, Jain AK, Kato E, Kitidis V, Goldewijk KK, Koven C, Landschutzer P, Lauvset SK, Lefevre N, Lenton A, Lima ID, Metzl N, Millero F, Munro DR, Murata A, Nabel J, Nakaoka S, Nojiri Y, O'Brien K, Olsen A, Ono T, Perez FF, Pfeil B, Pierrot D, Poulter B, Rehder G, Rodenbeck C, Saito S, Schuster U, Schwinger J, Seferian R, Steinhoff T, Stocker BD, Sutton AJ, Takahashi T, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, van Heuven S, Vandemark D, Viovy N, Wiltshire A, Zaehle S, Zeng N.  2015.  Global Carbon Budget 2015. Earth System Science Data. 7:349-396.   10.5194/essd-7-349-2015   AbstractWebsite

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (E-FF) are based on energy statistics and cement production data, while emissions from land-use change (E-LUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G(ATM)) is computed from the annual changes in concentration. The mean ocean CO2 sink (S-OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S-OCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (S-LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (20052014), E-FF was 9.0 +/- 0.5 GtC yr(-1) E-LUC was 0.9 +/- 0.5 GtC yr(-1), GATM was 4.4 +/- 0.1 GtC yr(-1), S-OCEAN was 2.6 +/- 0.5 GtC yr(-1), and S LAND was 3.0 +/- 0.8 GtC yr(-1). For the year 2014 alone, E FF grew to 9.8 +/- 0.5 GtC yr(-1), 0.6% above 2013, continuing the growth trend in these emissions, albeit at a slower rate compared to the average growth of 2.2% yr(-1) that took place during 2005-2014. Also, for 2014, E-LUC was 1.1 +/- 0.5 GtC yr(-1), G(ATM) was 3.9 +/- 0.2 GtC yr(-1), S-OCEAN was 2.9 +/- 0.5 GtC yr(-1), and S-LAND was 4.1 +/- 0.9 GtC yr(-1). G(ATM) was lower in 2014 compared to the past decade (2005-2014), reflecting a larger S-LAND for that year. The global atmospheric CO2 concentration reached 397.15 +/- 0.10 ppm averaged over 2014. For 2015, preliminary data indicate that the growth in E-FF will be near or slightly below zero, with a projection of 0.6 [ range of 1.6 to C 0.5] %, based on national emissions projections for China and the USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the global economy for the rest of the world. From this projection of E-FF and assumed constant E LUC for 2015, cumulative emissions of CO2 will reach about 555 +/- 55 GtC (2035 +/- 205 GtCO(2)) for 1870-2015, about 75% from E FF and 25% from E LUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quere et al., 2015, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi: 10.3334/CDIAC/GCP_2015).

Le Quere, C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, Keeling RF, Alin S, Andrews OD, Anthoni P, Barbero L, Bopp L, Chevallier F, Chini LP, Ciais P, Currie K, Delire C, Doney SC, Friedlingstein P, Gkritzalis T, Harris I, Hauck J, Haverd V, Hoppema M, Goldewijk KK, Jain AK, Kato E, Kortzinger A, Landschutzer P, Lefevre N, Lenton A, Lienert S, Lombardozzi D, Melton JR, Metzl N, Millero F, Monteiro PMS, Munro DR, Nabel J, Nakaoka S, O'Brien K, Olsen A, Omar AM, Ono T, Pierrot D, Poulter B, Rodenbeck C, Salisbury J, Schuster U, Schwinger J, Seferian R, Skjelvan I, Stocker BD, Sutton AJ, Takahashi T, Tian HQ, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Zaehle S.  2016.  Global Carbon Budget 2016. Earth System Science Data. 8:605-649.   10.5194/essd-8-605-2016   AbstractWebsite

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (E-FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (E-LUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G(ATM)) is computed from the annual changes in concentration. The mean ocean CO2 sink (S-OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S-OCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (S-LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2006-2015), E-FF was 9.3 +/- 0.5 GtC yr(-1), E-LUC 1.0 +/- 0.5 GtC yr(-1), G(ATM) 4.5 +/- 0.1 GtC yr(-1), S-OCEAN 2.6 +/- 0.5 GtC yr(-1), and S-LAND 3.1 +/- 0.9 GtC yr(-1). For year 2015 alone, the growth in E-FF was approximately zero and emissions remained at 9.9 +/- 0.5 GtC yr(-1), showing a slowdown in growth of these emissions compared to the average growth of 1.8% yr(-1) that took place during 2006-2015. Also, for 2015, E-LUC was 1.3 +/- 0.5 GtC yr(-1), G(ATM) was 6.3 +/- 0.2 GtC yr(-1), S-OCEAN was 3.0 +/- 0.5 GtC yr(-1), and S-LAND was 1.9 +/- 0.9 GtC yr(-1). G(ATM) was higher in 2015 compared to the past decade (2006-2015), reflecting a smaller S-LAND for that year. The global atmospheric CO2 concentration reached 399.4 +/- 0.1 ppm averaged over 2015. For 2016, preliminary data indicate the continuation of low growth in E-FF with +0.2% (range of -1.0 to +1.8 %) based on national emissions projections for China and USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. In spite of the low growth of E-FF in 2016, the growth rate in atmospheric CO2 concentration is expected to be relatively high because of the persistence of the smaller residual terrestrial sink (S-LAND) in response to El Nino conditions of 2015-2016. From this projection of E-FF and assumed constant E-LUC for 2016, cumulative emissions of CO2 will reach 565 +/- 55 GtC (2075 +/- 205 GtCO(2)) for 1870-2016, about 75% from E-FF and 25% from E-LUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quere et al., 2015b, a, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi: 10.3334/CDIAC/GCP_2016).

Le Quere, C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J, Manning AC, Korsbakken JI, Peters GP, Canadell JG, Jackson RB, Boden TA, Tans PP, Andrews OD, Arora VK, Bakker DCE, Barbero L, Becker M, Betts RA, Bopp L, Chevallier F, Chini LP, Ciais P, Cosca CE, Cross J, Currie K, Gasser T, Harris I, Hauck J, Haverd V, Houghton RA, Hunt CW, Hurtt G, Ilyina T, Jain AK, Kato E, Kautz M, Keeling RF, Goldewijk KK, Kortzinger A, Landschutzer P, Lefevre N, Lenton A, Lienert S, Lima I, Lombardozzi D, Metzl N, Millero F, Monteiro PMS, Munro DR, Nabel J, Nakaoka S, Nojiri Y, Padin XA, Peregon A, Pfeil B, Pierrot D, Poulter B, Rehder G, Reimer J, Rodenbeck C, Schwinger J, Seferian R, Skjelvan I, Stocker BD, Tian HQ, Tilbrook B, Tubiello FN, van der Laan-Luijkx IT, van der Werf GR, van Heuven S, Viovy N, Vuichard N, Walker AP, Watson AJ, Wiltshire AJ, Zaehle S, Zhu D.  2018.  Global Carbon Budget 2017. Earth System Science Data. 10:405-448.   10.5194/essd-10-405-2018   AbstractWebsite

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (E-FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (E-LUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G(ATM)) is computed from the annual changes in concentration. The ocean CO2 sink (S-OCEAN) and terrestrial CO2 sink (S-LAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (B-IM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as +/- 1 sigma. For the last decade available (2007-2016), E-FF was 9.4 +/- 0.5 GtC yr(-1), E-LUC 1.3 +/- 0.7 GtC yr(-1), G(ATM) 4.7 +/- 0.1 GtC yr(-1), S-OCEAN 2.4 +/- 0.5 GtC yr(-1), and S-LAND 3.0 +/- 0.8 GtC yr(-1), with a budget imbalance B-IM of 0.6 GtC yr(-1) indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in E-FF was approximately zero and emissions remained at 9.9 +/- 0.5 GtC yr(-1). Also for 2016, E-LUC was 1.3 +/- 0.7 GtC yr(-1), G(ATM) was 6.1 +/- 0.2 GtC yr(-1), S-OCEAN was 2.6 +/- 0.5 GtC yr(-1), and S-LAND was 2.7 +/- 1.0 GtC yr(-1), with a small B-IM of 0.3 GtC. G(ATM) continued to be higher in 2016 compared to the past decade (2007-2016), reflecting in part the high fossil emissions and the small S-LAND consistent with El Nino conditions. The global atmospheric CO2 concentration reached 402.8 +/- 0.1 ppm averaged over 2016. For 2017, preliminary data for the first 6-9 months indicate a renewed growth in E-FF of +2.0% (range of 0.8 to 3.0 %) based on national emissions projections for China, USA, and India, and projections of gross domestic product (GDP) corrected for recent changes in the carbon intensity of the economy for the rest of the world. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quere et al., 2016, 2015b, a, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017 (GCP, 2017).

Le Quere, C, Andrew RM, Friedlingstein P, Sitch S, Hauck J, Pongratz J, Pickers PA, Korsbakken JI, Peters GP, Canadell JG, Arneth A, Arora VK, Barbero L, Bastos A, Bopp L, Chevallier F, Chini LP, Ciais P, Doney SC, Gkritzalis T, Goll DS, Harris I, Haverd V, Hoffman FM, Hoppema M, Houghton RA, Hurtt G, Ilyina T, Jain AK, Johannessen T, Jones CD, Kato E, Keeling RF, Goldewijk KK, Landschutzer P, Lefevre N, Lienert S, Liu Z, Lombardozzi D, Metzl N, Munro DR, Nabel J, Nakaoka S, Neill C, Olsen A, Ono T, Patra P, Peregon A, Peters W, Peylin P, Pfeil B, Pierrot D, Poulter B, Rehder G, Resplandy L, Robertson E, Rocher M, Rodenbeck C, Schuster U, Schwinger J, Seferian R, Skjelvan I, Steinhoff T, Sutton A, Tans PP, Tian HQ, Tilbrook B, Tubiello FN, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Wright R, Zaehle S, Zheng B.  2018.  Global Carbon Budget 2018. Earth System Science Data. 10:2141-2194.   10.5194/essd-10-2141-2018   AbstractWebsite

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (E-FF) are based on energy statistics and cement production data, while emissions from land use and land-use change (E-LUC), mainly deforestation, are based on land use and land -use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (G(ATM)) is computed from the annual changes in concentration. The ocean CO2 sink (S-OCEAN) and terrestrial CO2 sink (S-LAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (B-IM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as +/- 1 sigma. For the last decade available (2008-2017), E-FF was 9.4 +/- 0.5 GtC yr(-1), E-LUC 1.5 +/- 0.7 GtC yr(-1), G(ATM) 4.7 +/- 0.02 GtC yr(-1), S-OCEAN 2.4 +/- 0.5 GtC yr(-1), and S-LAND 3.2 +/- 0.8 GtC yr(-1), with a budget imbalance B-IM of 0.5 GtC yr(-1) indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in E-FF was about 1.6 % and emissions increased to 9.9 +/- 0.5 GtC yr(-1). Also for 2017, E-LUC was 1.4 +/- 0.7 GtC yr(-1), G(ATM) was 4.6 +/- 0.2 GtC yr(-1), S-OCEAN was 2.5 +/- 0.5 GtC yr(-1), and S-LAND was 3.8 +/- 0.8 GtC yr(-1), with a B-IM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0 +/- 0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6-9 months indicate a renewed growth in E-FF of +2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959-2017, but discrepancies of up to 1 GtC yr(-1) persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land -use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quere et al., 2018, 2016, 2015a, b, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2018.

Manning, AC, Nisbet EG, Keeling RF, Liss PS.  2011.  Greenhouse gases in the Earth system: setting the agenda to 2030. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences. 369:1885-1890.   10.1098/rsta.2011.0076   AbstractWebsite

What do we need to know about greenhouse gases? Over the next 20 years, how should scientists study the role of greenhouse gases in the Earth system and the changes that are taking place? These questions were addressed at a Royal Society scientific Discussion Meeting in London on 22-23 February 2010, with over 300 participants.

I
Welp, LR, Patra PK, Rodenbeck C, Nemani R, Bi J, Piper SC, Keeling RF.  2016.  Increasing summer net CO2 uptake in high northern ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NDVI. Atmospheric Chemistry and Physics. 16:9047-9066.   10.5194/acp-16-9047-2016   AbstractWebsite

Warmer temperatures and elevated atmospheric CO2 concentrations over the last several decades have been credited with increasing vegetation activity and photosynthetic uptake of CO2 from the atmosphere in the high northern latitude ecosystems: the boreal forest and arctic tundra. At the same time, soils in the region have been warming, permafrost is melting, fire frequency and severity are increasing, and some regions of the boreal forest are showing signs of stress due to drought or insect disturbance. The recent trends in net carbon balance of these ecosystems, across heterogeneous disturbance patterns, and the future implications of these changes are unclear. Here, we examine CO2 fluxes from northern boreal and tundra regions from 1985 to 2012, estimated from two atmospheric inversions (RIGC and Jena). Both used measured atmospheric CO2 concentrations and wind fields from interannually variable climate reanalysis. In the arctic zone, the latitude region above 60 degrees N excluding Europe (10 degrees W-63 degrees E), neither inversion finds a significant long-term trend in annual CO2 balance. The boreal zone, the latitude region from approximately 50-60 degrees N, again excluding Europe, showed a trend of 8-11 Tg C yr(-2) over the common period of validity from 1986 to 2006, resulting in an annual CO2 sink in 2006 that was 170-230 Tg C yr(-1) larger than in 1986. This trend appears to continue through 2012 in the Jena inversion as well. In both latitudinal zones, the seasonal amplitude of monthly CO2 fluxes increased due to increased uptake in summer, and in the arctic zone also due to increased fall CO2 release. These findings suggest that the boreal zone has been maintaining and likely increasing CO2 sink strength over this period, despite browning trends in some regions and changes in fire frequency and land use. Meanwhile, the arctic zone shows that increased summer CO2 uptake, consistent with strong greening trends, is offset by increased fall CO2 release, resulting in a net neutral trend in annual fluxes. The inversion fluxes from the arctic and boreal zones covering the permafrost regions showed no indication of a large-scale positive climate-carbon feedback caused by warming temperatures on high northern latitude terrestrial CO2 fluxes from 1985 to 2012.

Miller, J, Lehman S, Wolak C, Turnbull J, Dunn G, Graven H, Keeling R, Meijer HAJ, Aerts-Bijma AT, Palstra SWL, Smith AM, Allison C, Southon J, Xu XM, Nakazawa T, Aoki S, Nakamura T, Guilderson T, LaFranchi B, Mukai H, Terao Y, Uchida M, Kondo M.  2013.  Initial results of an intercomparison of ams-based atmospheric (co2)-c-14 measurements. Radiocarbon. 55:1475-1483.   10.2458/azu_js_rc.55.16382   AbstractWebsite

This article presents results from the first 3 rounds of an international intercomparison of measurements of Delta(CO2)-C-14 in liter-scale samples of whole air by groups using accelerator mass spectrometry (AMS). The ultimate goal of the intercomparison is to allow the merging of Delta(CO2)-C-14 data from different groups, with the confidence that differences in the data are geophysical gradients and not artifacts of calibration. Eight groups have participated in at least 1 round of the intercomparison, which has so far included 3 rounds of air distribution between 2007 and 2010. The comparison is intended to be ongoing, so that: a) the community obtains a regular assessment of differences between laboratories; and b) individual laboratories can begin to assess the long-term repeatability of their measurements of the same source air. Air used in the intercomparison was compressed into 2 high-pressure cylinders in 2005 and 2006 at Niwot Ridge, Colorado (USA), with one of the tanks "spiked" with fossil CO2, so that the 2 tanks span the range of Delta(CO2)-C-14 typically encountered when measuring air from both remote background locations and polluted urban ones. Three groups show interlaboratory comparability within 1 parts per thousand for ambient level Delta(CO2)-C-14. For high CO2/low Delta(CO2)-C-14 air, 4 laboratories showed comparability within 2 parts per thousand. This approaches the goals set out by the World Meteorological Organization (WMO) CO2 Measurements Experts Group in 2005. One important observation is that single-sample precisions typically reported by the AMS community cannot always explain the observed differences within and between laboratories. This emphasizes the need to use long-term repeatability as a metric for measurement precision, especially in the context of long-term atmospheric monitoring.

M
Najjar, RG, Keeling RF.  2000.  Mean annual cycle of the air-sea oxygen flux: A global view. Global Biogeochemical Cycles. 14:573-584.   10.1029/1999gb900086   AbstractWebsite

A global monthly-mean climatology of the air-sea oxygen flux is presented and discussed. The climatology is based on the ocean oxygen climatology of Najjar and Keeling [1997] and wind speeds derived from a meteorological analysis center. Seasonal variations are characterized by outgassing of oxygen during spring and summer and ingassing of oxygen during fall and winter, a pattern consistent with thermal and biological forcing of the air-sea oxygen flux. The annual mean flux pattern is characterized by ingassing at high latitudes and the tropics and outgassing in middle latitudes. The air-sea oxygen flux is shown to exhibit patterns that agree well with patterns seen in a marine primary productivity climatology, in model generated air-sea O-2 fluxes, in estimates of remineralization in the shallow aphotic zone based on seasonal oxygen variations, in observed seasonal nutrient-temperature relationships, and in independent estimates of meridional oxygen transport in the Atlantic ocean. We also find that extratropical mixed layer new production during the spring-summer period, computed from biological seasonal net outgassing of oxygen, is equivalent to the production of 4.5-5.6 Gt C, much lower than previous estimates based on atmospheric O-2/N-2 measurements.

Manning, MR, Edmonds J, Emori S, Grubler A, Hibbard K, Joos F, Kainuma M, Keeling RF, Kram T, Manning AC, Meinshausen M, Moss R, Nakicenovic N, Riahi K, Rose SK, Smith S, Swart R, van Vuuren DP.  2010.  Misrepresentation of the IPCC CO2 emission scenarios. Nature Geoscience. 3:376-377.   10.1038/ngeo880   AbstractWebsite
n/a
Nottrott, A, Kleissl J, Keeling R.  2014.  Modeling passive scalar dispersion in the atmospheric boundary layer with WRF large-eddy simulation. Atmospheric Environment. 82:172-182.   10.1016/j.atmosenv.2013.10.026   AbstractWebsite

The ability of the Weather Research and Forecasting, large-eddy simulation model (WRF-LES) to model passive scalar dispersion from continuous sources in convective and neutral atmospheric boundary layers was investigated. WRF-LES accurately modeled mean plume trajectories and concentration fields. WRF-LES statistics of concentration fluctuations in the daytime convective boundary layer were similar to data obtained from laboratory experiments and other LES models. However, poor turbulence resolution near the surface in neutral boundary layer simulations caused under prediction of mean dispersion in the crosswind horizontal direction and over prediction of concentration variance in the neutral surface layer. A gradient in the intermittency factor for concentration fluctuations was observed near the surface, downwind of ground-level sources in the daytime boundary layer. That observation suggests that the intermittency factor is a promising metric for estimating source-sensor distance in source determination applications. (C) 2013 Elsevier Ltd. All rights reserved.

N
Nevison, C, Munro D, Lovenduski N, Cassar N, Keeling R, Krummel P, Tjiputra J.  2018.  Net community production in the Southern Ocean: Insights from comparing atmospheric potential oxygen to satellite ocean color algorithms and ocean models. Geophysical Research Letters. 45:10549-10559.   10.1029/2018gl079575   AbstractWebsite

The contribution of oceanic net community production (NCP) to the observed seasonal cycle in atmospheric potential oxygen (APO) is estimated at Cape Grim, Tasmania. The resulting APO(NCP) signal is compared to satellite and ocean model-based estimates of POC export and NCP across the Southern Ocean. The satellite products underestimate the amplitude of the observed APONCP seasonal cycle by more than a factor of 2. Ocean models suggest two reasons for this underestimate: (1) Current satellite products substantially underestimate the magnitude of NCP in early spring. (2) Seasonal O-2 outgassing is supported in large part by storage of carbon in DOC and living biomass. More DOC observations are needed to help evaluate this latter model prediction. Satellite products could be improved by developing seasonally dependent relationships between remote sensing chlorophyll data and in situ NCP, recognizing that the former is a measure of mass, the latter of flux. Plain Language Summary Phytoplankton in the surface ocean transform carbon dioxide into organic carbon while also producing oxygen. A fraction of the carbon is exported into the deep ocean, while the oxygen is emitted to the atmosphere. The carbon export rate influences how much carbon dioxide the ocean can absorb. The rate is commonly estimated using satellite-based phytoplankton color measured in the surface ocean, but such estimates involve many uncertain steps and assumptions. Small but detectible seasonal cycles in atmospheric oxygen have been used as an independent method for evaluating satellite-based estimates of organic carbon export. In this study, we evaluate eight satellite-derived carbon export estimates based on their ability to reproduce the observed seasonal cycle of atmospheric oxygen measured at a southeastern Australia site. All underpredict the seasonal oxygen cycle by at least a factor of 2, in part because they fail to capture the carbon and oxygen produced in early springtime and also because they focus on large particles of carbon that are heavy enough to sink while neglecting the dissolved fraction of organic carbon. Our study suggests that satellite estimates could be improved by a better understanding of seasonal variations in the relationship between phytoplankton productivity and carbon export.

O
Stephens, BB, Long MC, Keeling RF, Kort EA, Sweeney C, Apel EC, Atlas EL, Beaton S, Bent JD, Blake NJ, Bresch JF, Casey J, Daube BC, Diao MH, Diaz E, Dierssen H, Donets V, Gao BC, Gierach M, Green R, Haag J, Hayman M, Hills AJ, Hoecker-Martinez MS, Honomichl SB, Hornbrook RS, Jensen JB, Li RR, McCubbin I, McKain K, Morgan EJ, Nolte S, Powers JG, Rainwater B, Randolph K, Reeves M, Schauffler SM, Smith K, Smith M, Stith J, Stossmeister G, Toohey DW, Watt AS.  2018.  The O-2/N-2 Ratio and CO2 Airborne Southern Ocean Study. Bulletin of the American Meteorological Society. 99:381-402.   10.1175/bams-d-16-0206.1   AbstractWebsite

The Southern Ocean plays a critical role in the global climate system by mediating atmosphere-ocean partitioning of heat and carbon dioxide. However, Earth system models are demonstrably deficient in the Southern Ocean, leading to large uncertainties in future air-sea CO2 flux projections under climate warming and incomplete interpretations of natural variability on interannual to geologic time scales. Here, we describe a recent aircraft observational campaign, the O-2/N-2 Ratio and CO2 Airborne Southern Ocean (ORCAS) study, which collected measurements over the Southern Ocean during January and February 2016. The primary research objective of the ORCAS campaign was to improve observational constraints on the seasonal exchange of atmospheric carbon dioxide and oxygen with the Southern Ocean. The campaign also included measurements of anthropogenic and marine biogenic reactive gases; high-resolution, hyperspectral ocean color imaging of the ocean surface; and microphysical data relevant for understanding and modeling cloud processes. In each of these components of the ORCAS project, the campaign has significantly expanded the amount of observational data available for this remote region. Ongoing research based on these observations will contribute to advancing our understanding of this climatically important system across a range of topics including carbon cycling, atmospheric chemistry and transport, and cloud physics. This article presents an overview of the scientific and methodological aspects of the ORCAS project and highlights early findings.

Manizza, M, Keeling RF, Nevison CD.  2012.  On the processes controlling the seasonal cycles of the air-sea fluxes of O2 and N2O: A modelling study. Tellus Series B-Chemical and Physical Meteorology. 64   10.3402/tellusb.v64i0.18429   AbstractWebsite

The seasonal dynamics of the air-sea gas flux of oxygen (O-2) are controlled by multiple processes occurring simultaneously. Previous studies showed how to separate the thermal component from the total O-2 flux to quantify the residual oxygen flux due to biological processes. However, this biological signal includes the effect of both net euphotic zone production (NEZP) and subsurface water ventilation. To help understand and separate these two components, we use a large-scale ocean general circulation model (OGCM), globally configured, and coupled to a biogeochemical model. The combined model implements not only the oceanic cycle of O-2 but also the cycles of nitrous oxide (N2O), argon (Ar) and nitrogen (N-2). For this study, we apply a technique to distinguish the fluxes of O-2 driven separately by thermal forcing, NEZP, and address the role of ocean ventilation by carrying separate O-2 components in the model driven by solubility, NEZP and ventilation. Model results show that the ventilation component can be neglected in summer compared to the production and thermal components polewards but not equatorward of 30 degrees in each hemisphere. This also implies that neglecting the role of ventilation in the subtropical areas would lead to overestimation of the component of O-2 flux due to NEZP by 20-30%. Model results also show that the ventilation components of air-sea O-2 and N2O fluxes are strongly anti-correlated in a ratio that reflects the subsurface tracer/tracer relationships (similar to 0.1 mmol N2O/mol O-2) as derived from observations. The results support the use of simple scaling relationships linking together the thermally driven fluxes of Ar, N-2 and O-2. Furthermore, our study also shows that for latitudes polewards of 30 degrees of both hemispheres, the Garcia and Keeling (2001) climatology, when compared to our model results, has a phasing error with the fluxes being too early by similar to 2-3 weeks.

S
Keeling, RF, Stephens BB, Najjar RG, Doney SC, Archer D, Heimann M.  1998.  Seasonal variations in the atmospheric O2/N2 ratio in relation to the kinetics of air-sea gas exchange. Global Biogeochemical Cycles. 12:141-163.   10.1029/97gb02339   AbstractWebsite

Observations of seasonal variations in the atmospheric O-2/N-2 ratio are reported at nine baseline sites in the northern and southern hemispheres. Concurrent CO2 measurements are used to correct for the effects of land biotic exchanges of O-2 on the O-2/N-2 cycles thus allowing the residual component of the cycles due to oceanic exchanges of O-2 and N-2 to be calculated. The residual oceanic cycles in the northern hemisphere are nearly diametrically out of phase with the cycles in the southern hemisphere. The maxima in both hemispheres occur in summer. In both hemispheres, the middle-latitude sea level stations show the cycles with largest amplitudes and earliest phasing. Somewhat smaller amplitudes are observed at the high-latitude stations, and much smaller amplitudes are observed at the tropical stations. A model for simulating the oceanic component of the atmospheric O-2/N-2 cycles is presented consisting of the TM2 atmospheric tracer transport model [Heimann, 1995] driven at the lower boundary by O-2 fluxes derived from observed O-2 saturation anomalies in surface waters and by N-2 fluxes derived from the net air-sea heat flux. The model is optimized to fit the observed atmospheric O-2/N-2 cycles by adjusting the air-sea gas-exchange velocity, which relates O-2 anomaly to O-2 flux. The optimum fit corresponds to spatially and temporally averaged exchange velocities of 24+/-6 cm/hr for the oceans north of 31 degrees N and 29+/-12 cm/hr for the oceans south of 31 degrees S. These velocities agree to within the uncertainties with the gas-exchange velocities expected from the Wanninkhof [1992] formulation of the air-sea gas-exchange velocity combined with European Centre for Medium-Range Weather Forecasts winds [Gibson et al., 1997] but are larger than the exchange velocities expected from the Liss and Merlivat [1986] relation using the same winds. The results imply that the gas-exchange velocity for O-2, like that of CO2, may be enhanced in the open ocean by processes that were not systematically accounted for in the experiments used to derive the Liss and Merlivat relation.

Nevison, CD, Keeling RF, Weiss RF, Popp BN, Jin X, Fraser PJ, Porter LW, Hess PG.  2005.  Southern Ocean ventilation inferred from seasonal cycles of atmospheric N2O and O2/N2 at Cape Grim, Tasmania. Tellus Series B-Chemical and Physical Meteorology. 57:218-229.   10.1111/j.1600-0889.2005.00143.x   AbstractWebsite

The seasonal cycle of atmospheric N(2)O is derived from a 10-yr observational record at Cape Grim, Tasmania (41 degrees S, 145 degrees E). After correcting for thermal and stratospheric influences, the observed atmospheric seasonal cycle is consistent with the seasonal outgassing of microbially produced N(2)O from the Southern Ocean, as predicted by an ocean biogeochemistry model coupled to an atmospheric transport model (ATM). The model-observation comparison suggests a Southern Ocean N(2)O source of similar to 0.9 Tg N yr(-1) and is the first study to reproduce observed atmospheric seasonal cycles in N(2)O using specified surface sources in forward ATM runs. However, these results are sensitive to the thermal and stratospheric corrections applied to the atmospheric N(2)O data. The correlation in subsurface waters between apparent oxygen utilization (AOU) and N(2)O production (approximated as the concentration in excess of atmospheric equilibrium Delta N(2)O) is exploited to infer the atmospheric seasonal cycle in O(2)/N(2) due to ventilation of O(2)-depleted subsurface waters. Subtracting this cycle from the observed, thermally corrected seasonal cycle in atmospheric O(2)/N(2) allows the residual O(2)/N(2) signal from surface net community production to be inferred. Because N(2)O is only produced in subsurface ocean waters, where it is correlated to O(2) consumption, atmospheric N(2)O observations provide a methodology for distinguishing the surface production and subsurface ventilation signals in atmospheric O(2)/N(2), which have previously been inseparable.

Yadav, V, Duren R, Mueller K, Verhulst KR, Nehrkorn T, Kim J, Weiss RF, Keeling R, Sander S, Fischer ML, Newman S, Falk M, Kuwayama T, Hopkins F, Rafiq T, Whetstone J, Miller C.  2019.  Spatio-temporally resolved methane fluxes from the Los Angeles megacity. Journal of Geophysical Research-Atmospheres. 124:5131-5148.   10.1029/2018jd030062   AbstractWebsite

We combine sustained observations from a network of atmospheric monitoring stations with inverse modeling to uniquely obtain spatiotemporal (3-km, 4-day) estimates of methane emissions from the Los Angeles megacity and the broader South Coast Air Basin for 2015-2016. Our inversions use customized and validated high-fidelity meteorological output from Weather Research Forecasting and Stochastic Time-Inverted Lagrangian model for South Coast Air Basin and innovatively employ a model resolution matrix-based metric to disentangle the spatiotemporal information content of observations as manifested through estimated fluxes. We partially track and constrain fluxes from the Aliso Canyon natural gas leak and detect closure of the Puente Hills landfill, with no prior information. Our annually aggregated fluxes and their uncertainty excluding the Aliso Canyon leak period lie within the uncertainty bounds of the fluxes reported by the previous studies. Spatially, major sources of CH4 emissions in the basin were correlated with CH4-emitting infrastructure. Temporally, our findings show large seasonal variations in CH4 fluxes with significantly higher fluxes in winter in comparison to summer months, which is consistent with natural gas demand and anticorrelated with air temperature. Overall, this is the first study that utilizes inversions to detect both enhancement (Aliso Canyon leak) and reduction (Puente Hills) in CH4 fluxes due to the unintended events and policy decisions and thereby demonstrates the utility of inverse modeling for identifying variations in fluxes at fine spatiotemporal resolution.