Publications

Export 11 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E F G H I J K [L] M N O P Q R S T U V W X Y Z   [Show ALL]
L
Lueker, TJ, Keeling RF, Dubey MK.  2001.  The oxygen to carbon dioxide ratios observed in emissions from a wildfire in Northern California. Geophysical Research Letters. 28:2413-2416.   10.1029/2000gl011860   AbstractWebsite

At Trinidad, California we observed elevated CO2 concentrations and concomitant lowered O-2 levels coincident with forest fires 70 kin distant (from 10/8/99 to 10/21/99). The precision of our O-2 data, 1 mu mol O-2 /mol dry air, revealed the reduction of atmospheric oxygen resulting from the combustion of biomass, and the stoichiometric ratios (-O-2/CO2) of the wildfire emissions. Estimates of daily -O-2/CO2 ratios were obtained by regression of CO2 against corresponding O-2 data (R-2, 0.86 to 0.96). Daily -O-2/CO2 ratios changed from 1.15 to 1.41 on a particularly smoky day that coincided with elevated levels of CH4 and increased CH4/CO2 ratios. The change to a higher ratio during smoky conditions illustrates the association between changing emissions and -O-2/CO2 ratios, possibly due to changing wildfire dynamics.

Lueker, TJ, Walker SJ, Vollmer MK, Keeling RF, Nevison CD, Weiss RF, Garcia HE.  2003.  Coastal upwelling air-sea fluxes revealed in atmospheric observations of O2/N2, CO2 and N2O. Geophysical Research Letters. 30   10.1029/2002gl016615   AbstractWebsite

[1] We capture water column ventilation resulting from coastal upwelling in continuous records of O-2/N-2, CO2, and N2O at Trinidad, California. Our records reveal the gas exchange response time of the ocean to the upwelling and ensuing biological production. Satellite and buoy wind data allow extrapolation of our records to assess coastal upwelling air-sea fluxes of O-2 and N2O. We improve on previous regional estimates of N2O flux in coastal and continental shelf region of the western U. S. We characterize the source of N2O as being predominately from nitrification based on the O-2/N2O emissions ratio observed in our atmospheric records.

Lucas, DD, Yver Kwok C, Cameron-Smith P, Graven H, Bergmann D, Guilderson TP, Weiss R, Keeling R.  2015.  Designing optimal greenhouse gas observing networks that consider performance and cost. Geosci. Instrum. Method. Data Syst.. 4:121-137.: Copernicus Publications   10.5194/gi-4-121-2015   AbstractWebsite
n/a
Le Quere, C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, Keeling RF, Alin S, Andrews OD, Anthoni P, Barbero L, Bopp L, Chevallier F, Chini LP, Ciais P, Currie K, Delire C, Doney SC, Friedlingstein P, Gkritzalis T, Harris I, Hauck J, Haverd V, Hoppema M, Goldewijk KK, Jain AK, Kato E, Kortzinger A, Landschutzer P, Lefevre N, Lenton A, Lienert S, Lombardozzi D, Melton JR, Metzl N, Millero F, Monteiro PMS, Munro DR, Nabel J, Nakaoka S, O'Brien K, Olsen A, Omar AM, Ono T, Pierrot D, Poulter B, Rodenbeck C, Salisbury J, Schuster U, Schwinger J, Seferian R, Skjelvan I, Stocker BD, Sutton AJ, Takahashi T, Tian HQ, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Zaehle S.  2016.  Global Carbon Budget 2016. Earth System Science Data. 8:605-649.   10.5194/essd-8-605-2016   AbstractWebsite

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (E-FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (E-LUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G(ATM)) is computed from the annual changes in concentration. The mean ocean CO2 sink (S-OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S-OCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (S-LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2006-2015), E-FF was 9.3 +/- 0.5 GtC yr(-1), E-LUC 1.0 +/- 0.5 GtC yr(-1), G(ATM) 4.5 +/- 0.1 GtC yr(-1), S-OCEAN 2.6 +/- 0.5 GtC yr(-1), and S-LAND 3.1 +/- 0.9 GtC yr(-1). For year 2015 alone, the growth in E-FF was approximately zero and emissions remained at 9.9 +/- 0.5 GtC yr(-1), showing a slowdown in growth of these emissions compared to the average growth of 1.8% yr(-1) that took place during 2006-2015. Also, for 2015, E-LUC was 1.3 +/- 0.5 GtC yr(-1), G(ATM) was 6.3 +/- 0.2 GtC yr(-1), S-OCEAN was 3.0 +/- 0.5 GtC yr(-1), and S-LAND was 1.9 +/- 0.9 GtC yr(-1). G(ATM) was higher in 2015 compared to the past decade (2006-2015), reflecting a smaller S-LAND for that year. The global atmospheric CO2 concentration reached 399.4 +/- 0.1 ppm averaged over 2015. For 2016, preliminary data indicate the continuation of low growth in E-FF with +0.2% (range of -1.0 to +1.8 %) based on national emissions projections for China and USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. In spite of the low growth of E-FF in 2016, the growth rate in atmospheric CO2 concentration is expected to be relatively high because of the persistence of the smaller residual terrestrial sink (S-LAND) in response to El Nino conditions of 2015-2016. From this projection of E-FF and assumed constant E-LUC for 2016, cumulative emissions of CO2 will reach 565 +/- 55 GtC (2075 +/- 205 GtCO(2)) for 1870-2016, about 75% from E-FF and 25% from E-LUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quere et al., 2015b, a, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi: 10.3334/CDIAC/GCP_2016).

Le Quere, C, Peters GP, Andres RJ, Andrew RM, Boden TA, Ciais P, Friedlingstein P, Houghton RA, Marland G, Moriarty R, Sitch S, Tans P, Arneth A, Arvanitis A, Bakker DCE, Bopp L, Canadell JG, Chini LP, Doney SC, Harper A, Harris I, House JI, Jain AK, Jones SD, Kato E, Keeling RF, Goldewijk KK, Kortzinger A, Koven C, Lefevre N, Maignan F, Omar A, Ono T, Park GH, Pfeil B, Poulter B, Raupach MR, Regnier P, Rodenbeck C, Saito S, Schwinger J, Segschneider J, Stocker BD, Takahashi T, Tilbrook B, van Heuven S, Viovy N, Wanninkhof R, Wiltshire A, Zaehle S.  2014.  Global carbon budget 2013. Earth System Science Data. 6:235-263.   10.5194/essd-6-235-2014   AbstractWebsite

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (E-FF) are based on energy statistics, while emissions from land-use change (E-LUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G(ATM)) is computed from the annual changes in concentration. The mean ocean CO2 sink (S-OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (S-LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2 and land cover change (some including nitrogen-carbon interactions). All uncertainties are reported as +/- 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003-2012), E-FF was 8.6 +/- 0.4 GtC yr(-1), E-LUC 0.9 +/- 0.5 GtC yr(-1), G(ATM) 4.3 +/- 0.1 GtC yr(-1), S-OCEAN 2.5 +/- 0.5 GtC yr(-1), and S-LAND 2.8 +/- 0.8 GtC yr(-1). For year 2012 alone, E-FF grew to 9.7 +/- 0.5 GtC yr(-1), 2.2% above 2011, reflecting a continued growing trend in these emissions, GATM was 5.1 +/- 0.2 GtC yr(-1), S-OCEAN was 2.9 +/- 0.5 GtC yr(-1), and assuming an E-LUC of 1.0 +/- 0.5 GtC yr(-1) (based on the 2001-2010 average), S-LAND was 2.7 +/- 0.9 GtC yr(-1). G(ATM) was high in 2012 compared to the 2003-2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 concentration reached 392.52 +/- 0.10 ppm averaged over 2012. We estimate that E-FF will increase by 2.1% (1.1-3.1 %) to 9.9 +/- 0.5 GtC in 2013, 61% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 535 +/- 55 GtC for 1870-2013, about 70% from E-FF (390 +/- 20 GtC) and 30% from E-LUC (145 +/- 50 GtC). This paper also documents any changes in the methods and data sets used in this new carbon budget from previous budgets (Le Quere et al., 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi: 10.3334/CDIAC/GCP_2013_V2.3).

Le Quere, C, Aumont O, Bopp L, Bousquet P, Ciais P, Francey R, Heimann M, Keeling CD, Keeling RF, Kheshgi H, Peylin P, Piper SC, Prentice IC, Rayner PJ.  2003.  Two decades of ocean CO2 sink and variability. Tellus Series B-Chemical and Physical Meteorology. 55:649-656.   10.1034/j.1600-0889.2003.00043.x   AbstractWebsite

Atmospheric CO2 has increased at a nearly identical average rate of 3.3 and 3.2 Pg C yr(-1) for the decades of the 1980s and the 1990s, in spite of a large increase in fossil fuel emissions from 5.4 to 6.3 Pg C yr(-1). Thus, the sum of the ocean and land CO2 sinks was 1 Pg C yr(-1) larger in the 1990s than in to the 1980s. Here we quantify the ocean and land sinks for these two decades using recent atmospheric inversions and ocean models. The ocean and land sinks are estimated to be, respectively, 0.3 (0.1 to 0.6) and 0.7 (0.4 to 0.9) Pg C yr(-1) larger in the 1990s than in the 1980s. When variability less than 5 yr is removed, all estimates show a global oceanic sink more or less steadily increasing with time, and a large anomaly in the land sink during 1990-1994. For year-to-year variability, all estimates show 1/3 to 1/2 less variability in the ocean than on land, but the amplitude and phase of the oceanic variability remain poorly determined. A mean oceanic sink of 1.9 Pg C yr(-1) for the 1990s based on O-2 observations corrected for ocean outgassing is supported by these estimates, but an uncertainty on the mean value of the order of +/-0.7 Pg C yr(-1) remains. The difference between the two decades appears to be more robust than the absolute value of either of the two decades.

Le Quere, C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J, Manning AC, Korsbakken JI, Peters GP, Canadell JG, Jackson RB, Boden TA, Tans PP, Andrews OD, Arora VK, Bakker DCE, Barbero L, Becker M, Betts RA, Bopp L, Chevallier F, Chini LP, Ciais P, Cosca CE, Cross J, Currie K, Gasser T, Harris I, Hauck J, Haverd V, Houghton RA, Hunt CW, Hurtt G, Ilyina T, Jain AK, Kato E, Kautz M, Keeling RF, Goldewijk KK, Kortzinger A, Landschutzer P, Lefevre N, Lenton A, Lienert S, Lima I, Lombardozzi D, Metzl N, Millero F, Monteiro PMS, Munro DR, Nabel J, Nakaoka S, Nojiri Y, Padin XA, Peregon A, Pfeil B, Pierrot D, Poulter B, Rehder G, Reimer J, Rodenbeck C, Schwinger J, Seferian R, Skjelvan I, Stocker BD, Tian HQ, Tilbrook B, Tubiello FN, van der Laan-Luijkx IT, van der Werf GR, van Heuven S, Viovy N, Vuichard N, Walker AP, Watson AJ, Wiltshire AJ, Zaehle S, Zhu D.  2018.  Global Carbon Budget 2017. Earth System Science Data. 10:405-448.   10.5194/essd-10-405-2018   AbstractWebsite

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (E-FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (E-LUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G(ATM)) is computed from the annual changes in concentration. The ocean CO2 sink (S-OCEAN) and terrestrial CO2 sink (S-LAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (B-IM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as +/- 1 sigma. For the last decade available (2007-2016), E-FF was 9.4 +/- 0.5 GtC yr(-1), E-LUC 1.3 +/- 0.7 GtC yr(-1), G(ATM) 4.7 +/- 0.1 GtC yr(-1), S-OCEAN 2.4 +/- 0.5 GtC yr(-1), and S-LAND 3.0 +/- 0.8 GtC yr(-1), with a budget imbalance B-IM of 0.6 GtC yr(-1) indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in E-FF was approximately zero and emissions remained at 9.9 +/- 0.5 GtC yr(-1). Also for 2016, E-LUC was 1.3 +/- 0.7 GtC yr(-1), G(ATM) was 6.1 +/- 0.2 GtC yr(-1), S-OCEAN was 2.6 +/- 0.5 GtC yr(-1), and S-LAND was 2.7 +/- 1.0 GtC yr(-1), with a small B-IM of 0.3 GtC. G(ATM) continued to be higher in 2016 compared to the past decade (2007-2016), reflecting in part the high fossil emissions and the small S-LAND consistent with El Nino conditions. The global atmospheric CO2 concentration reached 402.8 +/- 0.1 ppm averaged over 2016. For 2017, preliminary data for the first 6-9 months indicate a renewed growth in E-FF of +2.0% (range of 0.8 to 3.0 %) based on national emissions projections for China, USA, and India, and projections of gross domestic product (GDP) corrected for recent changes in the carbon intensity of the economy for the rest of the world. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quere et al., 2016, 2015b, a, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017 (GCP, 2017).

Le Quere, C, Moriarty R, Andrew RM, Peters GP, Ciais P, Friedlingstein P, Jones SD, Sitch S, Tans P, Arneth A, Boden TA, Bopp L, Bozec Y, Canadell JG, Chini LP, Chevallier F, Cosca CE, Harris I, Hoppema M, Houghton RA, House JI, Jain AK, Johannessen T, Kato E, Keeling RF, Kitidis V, Goldewijk KK, Koven C, Landa CS, Landschutzer P, Lenton A, Lima ID, Marland G, Mathis JT, Metzl N, Nojiri Y, Olsen A, Ono T, Peng S, Peters W, Pfeil B, Poulter B, Raupach MR, Regnier P, Rodenbeck C, Saito S, Salisbury JE, Schuster U, Schwinger J, Seferian R, Segschneider J, Steinhoff T, Stocker BD, Sutton AJ, Takahashi T, Tilbrook B, van der Werf GR, Viovy N, Wang YP, Wanninkhof R, Wiltshire A, Zeng N.  2015.  Global carbon budget 2014. Earth System Science Data. 7:47-85.   10.5194/essd-7-47-2015   AbstractWebsite

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (E-FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (E-LUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G(ATM)) is computed from the annual changes in concentration. The mean ocean CO2 sink (S-OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S-OCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (S-LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004-2013), E-FF was 8.9 +/- 0.4 GtC yr(-1), E-LUC 0.9 +/- 0.5 GtC yr(-1), G(ATM) 4.3 +/- 0.1 GtC yr(-1), S-OCEAN 2.6 +/- 0.5 GtC yr(-1), and S-LAND 2.9 +/- 0.8 GtC yr(-1). For year 2013 alone, E-FF grew to 9.9 +/- 0.5 GtC yr(-1), 2.3% above 2012, continuing the growth trend in these emissions, E-LUC was 0.9 +/- 0.5 GtC yr(-1), G(ATM) was 5.4 +/- 0.2 GtC yr(-1), S-OCEAN was 2.9 +/- 0.5 GtC yr(-1), and S-LAND was 2.5 +/- 0.9 GtC yr(-1). G(ATM) was high in 2013, reflecting a steady increase in E-FF and smaller and opposite changes between S-OCEAN and S-LAND compared to the past decade (2004-2013). The global atmospheric CO2 concentration reached 395.31 +/- 0.10 ppm averaged over 2013. We estimate that E-FF will increase by 2.5% (1.3-3.5 %) to 10.1 +/- 0.6 GtC in 2014 (37.0 +/- 2.2 GtCO(2) yr(-1)), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of E-FF and assumed constant E-LUC for 2014, cumulative emissions of CO2 will reach about 545 +/- 55 GtC (2000 +/- 200 GtCO(2)) for 1870-2014, about 75% from E-FF and 25% from E-LUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quere et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).

Le Quere, C, Andrew RM, Friedlingstein P, Sitch S, Hauck J, Pongratz J, Pickers PA, Korsbakken JI, Peters GP, Canadell JG, Arneth A, Arora VK, Barbero L, Bastos A, Bopp L, Chevallier F, Chini LP, Ciais P, Doney SC, Gkritzalis T, Goll DS, Harris I, Haverd V, Hoffman FM, Hoppema M, Houghton RA, Hurtt G, Ilyina T, Jain AK, Johannessen T, Jones CD, Kato E, Keeling RF, Goldewijk KK, Landschutzer P, Lefevre N, Lienert S, Liu Z, Lombardozzi D, Metzl N, Munro DR, Nabel J, Nakaoka S, Neill C, Olsen A, Ono T, Patra P, Peregon A, Peters W, Peylin P, Pfeil B, Pierrot D, Poulter B, Rehder G, Resplandy L, Robertson E, Rocher M, Rodenbeck C, Schuster U, Schwinger J, Seferian R, Skjelvan I, Steinhoff T, Sutton A, Tans PP, Tian HQ, Tilbrook B, Tubiello FN, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Wright R, Zaehle S, Zheng B.  2018.  Global Carbon Budget 2018. Earth System Science Data. 10:2141-2194.   10.5194/essd-10-2141-2018   AbstractWebsite

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (E-FF) are based on energy statistics and cement production data, while emissions from land use and land-use change (E-LUC), mainly deforestation, are based on land use and land -use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (G(ATM)) is computed from the annual changes in concentration. The ocean CO2 sink (S-OCEAN) and terrestrial CO2 sink (S-LAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (B-IM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as +/- 1 sigma. For the last decade available (2008-2017), E-FF was 9.4 +/- 0.5 GtC yr(-1), E-LUC 1.5 +/- 0.7 GtC yr(-1), G(ATM) 4.7 +/- 0.02 GtC yr(-1), S-OCEAN 2.4 +/- 0.5 GtC yr(-1), and S-LAND 3.2 +/- 0.8 GtC yr(-1), with a budget imbalance B-IM of 0.5 GtC yr(-1) indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in E-FF was about 1.6 % and emissions increased to 9.9 +/- 0.5 GtC yr(-1). Also for 2017, E-LUC was 1.4 +/- 0.7 GtC yr(-1), G(ATM) was 4.6 +/- 0.2 GtC yr(-1), S-OCEAN was 2.5 +/- 0.5 GtC yr(-1), and S-LAND was 3.8 +/- 0.8 GtC yr(-1), with a B-IM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0 +/- 0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6-9 months indicate a renewed growth in E-FF of +2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959-2017, but discrepancies of up to 1 GtC yr(-1) persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land -use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quere et al., 2018, 2016, 2015a, b, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2018.

Le Quere, C, Moriarty R, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Friedlingstein P, Peters GP, Andres RJ, Boden TA, Houghton RA, House JI, Keeling RF, Tans P, Arneth A, Bakker DCE, Barbero L, Bopp L, Chang J, Chevallier F, Chini LP, Ciais P, Fader M, Feely RA, Gkritzalis T, Harris I, Hauck J, Ilyina T, Jain AK, Kato E, Kitidis V, Goldewijk KK, Koven C, Landschutzer P, Lauvset SK, Lefevre N, Lenton A, Lima ID, Metzl N, Millero F, Munro DR, Murata A, Nabel J, Nakaoka S, Nojiri Y, O'Brien K, Olsen A, Ono T, Perez FF, Pfeil B, Pierrot D, Poulter B, Rehder G, Rodenbeck C, Saito S, Schuster U, Schwinger J, Seferian R, Steinhoff T, Stocker BD, Sutton AJ, Takahashi T, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, van Heuven S, Vandemark D, Viovy N, Wiltshire A, Zaehle S, Zeng N.  2015.  Global Carbon Budget 2015. Earth System Science Data. 7:349-396.   10.5194/essd-7-349-2015   AbstractWebsite

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (E-FF) are based on energy statistics and cement production data, while emissions from land-use change (E-LUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G(ATM)) is computed from the annual changes in concentration. The mean ocean CO2 sink (S-OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S-OCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (S-LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (20052014), E-FF was 9.0 +/- 0.5 GtC yr(-1) E-LUC was 0.9 +/- 0.5 GtC yr(-1), GATM was 4.4 +/- 0.1 GtC yr(-1), S-OCEAN was 2.6 +/- 0.5 GtC yr(-1), and S LAND was 3.0 +/- 0.8 GtC yr(-1). For the year 2014 alone, E FF grew to 9.8 +/- 0.5 GtC yr(-1), 0.6% above 2013, continuing the growth trend in these emissions, albeit at a slower rate compared to the average growth of 2.2% yr(-1) that took place during 2005-2014. Also, for 2014, E-LUC was 1.1 +/- 0.5 GtC yr(-1), G(ATM) was 3.9 +/- 0.2 GtC yr(-1), S-OCEAN was 2.9 +/- 0.5 GtC yr(-1), and S-LAND was 4.1 +/- 0.9 GtC yr(-1). G(ATM) was lower in 2014 compared to the past decade (2005-2014), reflecting a larger S-LAND for that year. The global atmospheric CO2 concentration reached 397.15 +/- 0.10 ppm averaged over 2014. For 2015, preliminary data indicate that the growth in E-FF will be near or slightly below zero, with a projection of 0.6 [ range of 1.6 to C 0.5] %, based on national emissions projections for China and the USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the global economy for the rest of the world. From this projection of E-FF and assumed constant E LUC for 2015, cumulative emissions of CO2 will reach about 555 +/- 55 GtC (2035 +/- 205 GtCO(2)) for 1870-2015, about 75% from E FF and 25% from E LUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quere et al., 2015, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi: 10.3334/CDIAC/GCP_2015).

Langenfelds, RL, Francey RJ, Steele LP, Battle M, Keeling RF, Budd WF.  1999.  Partitioning of the global fossil CO2 sink using a 19-year trend in atmospheric O2. Geophysical Research Letters. 26:1897-1900.   10.1029/1999gl900446   AbstractWebsite

O-2/N-2 is measured in the Cape Grim Air Archive (CGAA), a suite of tanks filled with background air at Cape Grim, Tasmania (40.7 degrees S, 144.8 degrees E) between April 1978 and January 1997. Derived trends are compared with published O-2/N-2 records and assessed against limits on interannual variability of net terrestrial exchanges imposed by trends of delta(13)C in CO2. Two old samples from 1978 and 1987 and eight from 1996/97 survive critical selection criteria and give a mean 19-year trend in delta(O-2/N-2) of -16.7 +/- 0.5 per meg y(-1), implying net storage of +2.3 +/- 0.7 GtC (10(15) g carbon) yr(-1) of fossil fuel CO2 in the oceans and +0.2 +/- 0.9 GtC yr(-1) in the terrestrial biosphere. The uptake terms are consistent for both O-2/N-2 and delta(13)C tracers if the mean C-13 isotopic disequilibrium flux, combining terrestrial and oceanic contributions, is 93 +/- 15 GtC parts per thousand yr(-1).