Export 111 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J [K] L M N O P Q R S T U V W X Y Z   [Show ALL]
Reid, PC, Fischer AC, Lewis-Brown E, Meredith MP, Sparrow M, Andersson AJ, Antia A, Bates NR, Bathmann U, Beaugrand G, Brix H, Dye S, Edwards M, Furevik T, Gangsto R, Hatun H, Hopcroft RR, Kendall M, Kasten S, Keeling R, Le Quere C, Mackenzie FT, Malin G, Mauritzen C, Olafsson J, Paull C, Rignot E, Shimada K, Vogt M, Wallace C, Wang ZM, Washington R.  2009.  Impacts of the Oceans on Climate Change. Advances in Marine Biology. 56( Sims DW, Ed.).:1-150., San Diego: Elsevier Academic Press Inc   10.1016/s0065-2881(09)56001-4   Abstract

The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the world there has been an accelerating change in sea temperatures over the last few decades, which has contributed to rising sea-level. The oceans are also the main store of carbon dioxide (CO(2)), and are estimated to have taken up similar to 40% of anthropogenic-sourced CO(2) from the atmosphere since the beginning of the industrial revolution. A proportion of the carbon uptake is exported via the four ocean 'carbon pumps' (Solubility, Biological, Continental Shelf and Carbonate Counter) to the deep ocean reservoir. Increases in sea temperature and changing planktonic systems and ocean currents may lead to a reduction in the uptake of CO(2) by the ocean; some evidence suggests a suppression of parts of the marine carbon sink is already underway. While the oceans have buffered climate change through the uptake of CO(2) produced by fossil fuel burning this has already had an impact on ocean chemistry through ocean acidification and will continue to do so. Feedbacks to climate change from acidification may result from expected impacts on marine organisms (especially corals and calcareous plankton), ecosystems and biogeochemical cycles. The polar regions of the world are showing the most rapid responses to climate change. As a result of a strong ice-ocean influence, small changes in temperature, salinity and ice cover may trigger large and sudden changes in regional climate with potential downstream feedbacks to the climate of the rest of the world. A warming Arctic Ocean may lead to further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO(2) and limit temperature rise over the next century will be underestimated.

Blaine, TW, Keeling RF, Paplawsky WJ.  2006.  An improved inlet for precisely measuring the atmospheric Ar/N2 ratio. Atmospheric Chemistry and Physics. 6:1181-1184. AbstractWebsite

The atmospheric Ar/N-2 ratio is expected to be useful as a tracer of air-sea heat exchange, but this application has been hindered in part due to sampling artifacts. Here we show that the variability in delta(Ar/N-2) due to thermal fractionation at the inlet can be on the order of 40 - 80 per meg, and we introduce the use of an aspirated solar shield that successfully minimizes such fractionation. The data collected using this new inlet have a mean diurnal cycle of 1.0 per meg or less, suggesting that any residual thermal fractionation effect is reduced to this level.

Welp, LR, Patra PK, Rodenbeck C, Nemani R, Bi J, Piper SC, Keeling RF.  2016.  Increasing summer net CO2 uptake in high northern ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NDVI. Atmospheric Chemistry and Physics. 16:9047-9066.   10.5194/acp-16-9047-2016   AbstractWebsite

Warmer temperatures and elevated atmospheric CO2 concentrations over the last several decades have been credited with increasing vegetation activity and photosynthetic uptake of CO2 from the atmosphere in the high northern latitude ecosystems: the boreal forest and arctic tundra. At the same time, soils in the region have been warming, permafrost is melting, fire frequency and severity are increasing, and some regions of the boreal forest are showing signs of stress due to drought or insect disturbance. The recent trends in net carbon balance of these ecosystems, across heterogeneous disturbance patterns, and the future implications of these changes are unclear. Here, we examine CO2 fluxes from northern boreal and tundra regions from 1985 to 2012, estimated from two atmospheric inversions (RIGC and Jena). Both used measured atmospheric CO2 concentrations and wind fields from interannually variable climate reanalysis. In the arctic zone, the latitude region above 60 degrees N excluding Europe (10 degrees W-63 degrees E), neither inversion finds a significant long-term trend in annual CO2 balance. The boreal zone, the latitude region from approximately 50-60 degrees N, again excluding Europe, showed a trend of 8-11 Tg C yr(-2) over the common period of validity from 1986 to 2006, resulting in an annual CO2 sink in 2006 that was 170-230 Tg C yr(-1) larger than in 1986. This trend appears to continue through 2012 in the Jena inversion as well. In both latitudinal zones, the seasonal amplitude of monthly CO2 fluxes increased due to increased uptake in summer, and in the arctic zone also due to increased fall CO2 release. These findings suggest that the boreal zone has been maintaining and likely increasing CO2 sink strength over this period, despite browning trends in some regions and changes in fire frequency and land use. Meanwhile, the arctic zone shows that increased summer CO2 uptake, consistent with strong greening trends, is offset by increased fall CO2 release, resulting in a net neutral trend in annual fluxes. The inversion fluxes from the arctic and boreal zones covering the permafrost regions showed no indication of a large-scale positive climate-carbon feedback caused by warming temperatures on high northern latitude terrestrial CO2 fluxes from 1985 to 2012.

Stephens, BB, Keeling RF.  2000.  The influence of Antarctic sea ice on glacial-interglacial CO2 variations. Nature. 404:171-174.   10.1038/35004556   AbstractWebsite

Ice-core measurements indicate that atmospheric CO(2) concentrations during glacial periods were consistently about 80 parts per million lower than during interglacial periods(1). Previous explanations for this observation(2-9) have typically had difficulty accounting for either the estimated glacial O(2) concentrations in the deep sea, (13)C/(12)C ratios in Antarctic surface waters, or the depth of calcite saturation; also lacking is an explanation for the strong link between atmospheric CO(2) and Antarctic air temperature(1). There is growing evidence that the amount of deep water upwelling at low latitudes is significantly overestimated in most ocean general circulation models(10,11) and simpler box models previously used to investigate this problem. Here we use a box model with deep-water upwelling confined to south of 55 degrees S to investigate the glacial-interglacial linkages between Antarctic air temperature and atmospheric CO(2) variations. We suggest that low glacial atmospheric CO(2) levels might result from reduced deep-water ventilation associated with either year-round Antarctic sea-ice coverage, or wintertime coverage combined with ice-induced stratification during the summer. The model presented here reproduces 67 parts per million of the observed glacial-interglacial CO(2) difference, as a result of reduced air-sea gas exchange in the Antarctic region, and is generally consistent with the additional observational constraints.

Miller, J, Lehman S, Wolak C, Turnbull J, Dunn G, Graven H, Keeling R, Meijer HAJ, Aerts-Bijma AT, Palstra SWL, Smith AM, Allison C, Southon J, Xu XM, Nakazawa T, Aoki S, Nakamura T, Guilderson T, LaFranchi B, Mukai H, Terao Y, Uchida M, Kondo M.  2013.  Initial results of an intercomparison of ams-based atmospheric (co2)-c-14 measurements. Radiocarbon. 55:1475-1483.   10.2458/azu_js_rc.55.16382   AbstractWebsite

This article presents results from the first 3 rounds of an international intercomparison of measurements of Delta(CO2)-C-14 in liter-scale samples of whole air by groups using accelerator mass spectrometry (AMS). The ultimate goal of the intercomparison is to allow the merging of Delta(CO2)-C-14 data from different groups, with the confidence that differences in the data are geophysical gradients and not artifacts of calibration. Eight groups have participated in at least 1 round of the intercomparison, which has so far included 3 rounds of air distribution between 2007 and 2010. The comparison is intended to be ongoing, so that: a) the community obtains a regular assessment of differences between laboratories; and b) individual laboratories can begin to assess the long-term repeatability of their measurements of the same source air. Air used in the intercomparison was compressed into 2 high-pressure cylinders in 2005 and 2006 at Niwot Ridge, Colorado (USA), with one of the tanks "spiked" with fossil CO2, so that the 2 tanks span the range of Delta(CO2)-C-14 typically encountered when measuring air from both remote background locations and polluted urban ones. Three groups show interlaboratory comparability within 1 parts per thousand for ambient level Delta(CO2)-C-14. For high CO2/low Delta(CO2)-C-14 air, 4 laboratories showed comparability within 2 parts per thousand. This approaches the goals set out by the World Meteorological Organization (WMO) CO2 Measurements Experts Group in 2005. One important observation is that single-sample precisions typically reported by the AMS community cannot always explain the observed differences within and between laboratories. This emphasizes the need to use long-term repeatability as a metric for measurement precision, especially in the context of long-term atmospheric monitoring.

Rodenbeck, C, Bakker DCE, Metzl N, Olsen A, Sabine C, Cassar N, Reum F, Keeling RF, Heimann M.  2014.  Interannual sea-air CO2 flux variability from an observation-driven ocean mixed-layer scheme. Biogeosciences. 11:4599-4613.   10.5194/bg-11-4599-2014   AbstractWebsite

Interannual anomalies in the sea-air carbon dioxide (CO2) exchange have been estimated from surface-ocean CO2 partial pressure measurements. Available data are sufficient to constrain these anomalies in large parts of the tropical and North Pacific and in the North Atlantic, in some areas covering the period from the mid 1980s to 2011. Global interannual variability is estimated as about 0.31 Pg Cyr(-1) (temporal standard deviation 1993-2008). The tropical Pacific accounts for a large fraction of this global variability, closely tied to El Ni o-Southern Oscillation (ENSO). Anomalies occur more than 6 months later in the east than in the west. The estimated amplitude and ENSO response are roughly consistent with independent information from atmospheric oxygen data. This both supports the variability estimated from surface-ocean carbon data and demonstrates the potential of the atmospheric oxygen signal to constrain ocean biogeochemical processes. The ocean variability estimated from surface-ocean carbon data can be used to improve land CO2 flux estimates from atmospheric inversions.

Rodenbeck, C, Le Quere C, Heimann M, Keeling RF.  2008.  Interannual variability in oceanic biogeochemical processes inferred by inversion of atmospheric O2/N2 and CO2 data. Tellus Series B-Chemical and Physical Meteorology. 60:685-705.   10.1111/j.1600-0889.2008.00375.x   AbstractWebsite

Atmospheric measurements of O(2)/N(2) and CO(2) at up to nine sites have been used to infer the interannual variations in oceanic O(2) exchange with an inverse method. The method distinguishes the regional contributions of three latitudinal bands, partly the individual contributions of the North Pacific and the North Atlantic also. The interannual variations of the inferred O(2) fluxes in the tropical band correlate significantly with the El Nino/Southern Oscillation. Tropical O(2) variations appear to be dominated by the ventilation of the O(2) minimum zone from variations in Pacific equatorial upwelling. The interannual variations of the northern and southern extratropical bands are of similar amplitude, though the attribution to mechanisms is less clear. The interannual variations estimated by the inverse method are larger than those estimated by the current generation of global ocean biogeochemistry models, especially in the North Atlantic, suggesting that the representation of biological processes plays a role. The comparison further suggests that O(2) variability is a more stringent test to validate models than CO(2) variability, because the processes driving O(2) variability combine in the same direction and amplify the underlying climatic signal.

Welp, LR, Keeling RF, Meijer HAJ, Bollenbacher AF, Piper SC, Yoshimura K, Francey RJ, Allison CE, Wahlen M.  2011.  Interannual variability in the oxygen isotopes of atmospheric CO2 driven by El Nino. Nature. 477:579-582.   10.1038/nature10421   AbstractWebsite

The stable isotope ratios of atmospheric CO2 (O-18/O-16 and C-13/C-12) have been monitored since 1977 to improve our understanding of the global carbon cycle, because biosphere-atmosphere exchange fluxes affect the different atomic masses in a measurable way(1). Interpreting the O-18/O-16 variability has proved difficult, however, because oxygen isotopes in CO2 are influenced by both the carbon cycle and the water cycle(2). Previous attention focused on the decreasing O-18/O-16 ratio in the 1990s, observed by the global Cooperative Air Sampling Network of the US National Oceanic and Atmospheric Administration Earth System Research Laboratory. This decrease was attributed variously to a number of processes including an increase in Northern Hemisphere soil respiration(3); a global increase in C-4 crops at the expense of C-3 forests(4); and environmental conditions, such as atmospheric turbulence(5) and solar radiation(6), that affect CO2 exchange between leaves and the atmosphere. Here we present 30 years' worth of data on O-18/O-16 in CO2 from the Scripps Institution of Oceanography global flask network and show that the interannual variability is strongly related to the El Nino/Southern Oscillation. We suggest that the redistribution of moisture and rainfall in the tropics during an El Nino increases the O-18/O-16 ratio of precipitation and plant water, and that this signal is then passed on to atmospheric CO2 by biosphere-atmosphere gas exchange. We show how the decay time of the El Nino anomaly in this data set can be useful in constraining global gross primary production. Our analysis shows a rapid recovery from El Nino events, implying a shorter cycling time of CO2 with respect to the terrestrial biosphere and oceans than previously estimated. Our analysis suggests that current estimates of global gross primary production, of 120 petagrams of carbon per year(7), may be too low, and that a best guess of 150-175 petagrams of carbon per year better reflects the observed rapid cycling of CO2. Although still tentative, such a revision would present a new benchmark by which to evaluate global biospheric carbon cycling models.

Manning, AC, Keeling RF, Katz LE, Paplawsky WJ, McEvoy EM.  2003.  Interpreting the seasonal cycles of atmospheric oxygen and carbon dioxide concentrations at American Samoa Observatory. Geophysical Research Letters. 30   10.1029/2001gl014312   AbstractWebsite

We present seven years of atmospheric O-2/N-2 ratio and CO2 concentration data measured from flask samples collected at American Samoa. These data are unusual, exhibiting higher short-term variability, and seasonal cycles not in phase with other sampling stations. The unique nature of atmospheric data from Samoa has been noted previously from measurements of CO2, methyl chloroform, and ozone. With our O-2 data, we observe greater magnitude in the short-term variability, but, in contrast, no clear seasonal pattern to this variability. This we attribute to significant regional sources and sinks existing for O-2 in both hemispheres, and a dependence on both the latitudinal and altitudinal origins of air masses. We also hypothesize that some samples exhibit a component of "older'' air, demonstrating recirculation of air within the tropics. Our findings could be used to help constrain atmospheric transport models which are not well characterized in tropical regions.

Sundquist, ET, Keeling RF.  2009.  The Mauna Loa carbon dioxide record: lessons for long-term earth observations. Carbon sequestration and its role in the global carbon cycle. ( McPherson BJ, Sundquist ET, Eds.).:27-35., Washington, DC: American Geophysical Union Abstract

"For carbon sequestration, the issues of monitoring, assessment and verification of carbon content and storage efficacy are perhaps the most uncertain yet most critical issues facing the broader context of climate change in relation to carbon sequestration. As a result, this book presents current perspectives and research that combine four major areas: verification and assessment of global carbon sources and sinks; potential capacity and temporal/spatial scales of terrestrial, oceanic, and geologic carbon storage; assessing risks and benefits associated with terrestrial, oceanic, and geologic carbon storage; and predicting, monitoring, and verifying effectiveness of terrestrial, oceanic and geologic carbon storage. This volume is based on a Chapman conference and will appeal to the rapidly growing group of scientists and engineers in examining methods for deliberate carbon sequestration through storage in plants, soils, the oceans, and geological repositories."--Publisher's description.

Najjar, RG, Keeling RF.  2000.  Mean annual cycle of the air-sea oxygen flux: A global view. Global Biogeochemical Cycles. 14:573-584.   10.1029/1999gb900086   AbstractWebsite

A global monthly-mean climatology of the air-sea oxygen flux is presented and discussed. The climatology is based on the ocean oxygen climatology of Najjar and Keeling [1997] and wind speeds derived from a meteorological analysis center. Seasonal variations are characterized by outgassing of oxygen during spring and summer and ingassing of oxygen during fall and winter, a pattern consistent with thermal and biological forcing of the air-sea oxygen flux. The annual mean flux pattern is characterized by ingassing at high latitudes and the tropics and outgassing in middle latitudes. The air-sea oxygen flux is shown to exhibit patterns that agree well with patterns seen in a marine primary productivity climatology, in model generated air-sea O-2 fluxes, in estimates of remineralization in the shallow aphotic zone based on seasonal oxygen variations, in observed seasonal nutrient-temperature relationships, and in independent estimates of meridional oxygen transport in the Atlantic ocean. We also find that extratropical mixed layer new production during the spring-summer period, computed from biological seasonal net outgassing of oxygen, is equivalent to the production of 4.5-5.6 Gt C, much lower than previous estimates based on atmospheric O-2/N-2 measurements.

Keeling, RF, Blaine T, Paplawsky B, Katz L, Atwood C, Brockwell T.  2006.  Measurement of changes in atmospheric Ar/N2 ratio using a rapid-switching, single-capillary mass spectrometer system (vol 56B, pg 322, 2006). Tellus Series B-Chemical and Physical Meteorology. 58:255-255.   10.1111/j.1600-0889.2006.00190.x   AbstractWebsite
Keeling, RF, Blaine T, Paplawsky B, Katz L, Atwood C, Brockwell T.  2004.  Measurement of changes in atmospheric Ar/N2 ratio using a rapid-switching, single-capillary mass spectrometer system. Tellus Series B-Chemical and Physical Meteorology. 56:322-338.   10.1111/j.1600-0889.2004.00117.x   AbstractWebsite

The atmospheric Ar/N-2 ratio is expected to undergo very slight variations due to exchanges of Ar and N-2 across the air-sea interface, driven by ocean solubility changes. Observations of these variations may provide useful constraints on large-scale fluxes of heat across the air-sea interface. A mass spectrometer system is described that incorporates a magnet with a wide exit face, allowing a large mass spread, and incorporates an inlet with rapid (5 s) switching of sources gases through a single capillary, thus achieving high precision in the comparison of sample and reference gases. The system allows simultaneous measurement of Ar/N-2, O-2/N, and CO2/N-2 ratios. The system achieves a short-term precision in Ar/N-2 of 10 per meg for a 10 s integration, which can be averaged to achieve an internal precision of a few per meg in the comparison of reference gases. Results for Ar/N-2 are reported from flasks samples collected from nine stations in a north-to-south global network over about a 1 yr period. The imprecision on an individual flask, as estimated from replicate agreement, is 11 per meg. This imprecision is dominated by real variability between samples at the time of analysis. Seasonal cycles are marginally resolved at the extra-tropical stations with amplitudes of 5 to 15 per meg. Annual-mean values are constant between stations to within 5 per meg. The results are compared with a numerical simulation of the cycles and gradients in Ar/N-2 based on the TM2 tracer transport model in combination with air-sea Ar and N-2 fluxes derived from climatological air-sea heat fluxes. The possibility is suggested that Ar/N-2 ratios may be detectably enriched near the ground by gravimetric or thermal fractionation under conditions of strong surface inversions.

Battle, M, Bender M, Hendricks MB, Ho DT, Mika R, McKinley G, Fan SM, Blaine T, Keeling RF.  2003.  Measurements and models of the atmospheric Ar/N2 ratio. Geophysical Research Letters. 30   10.1029/2003gl017411   AbstractWebsite

[1] The Ar/N-2 ratio of air measured at 6 globally distributed sites shows annual cycles with amplitudes of 12 to 37 parts in 10(6). Summertime maxima reflect the atmospheric Ar enrichment driven by seasonal warming and degassing of the oceans. Paired models of air-sea heat fluxes and atmospheric tracer transport predict seasonal cycles in the Ar/N-2 ratio that agree with observations, within uncertainties.

Petrenko, VV, Severinghaus JP, Schaefer H, Smith AM, Kuhl T, Baggenstos D, Hua Q, Brook EJ, Rose P, Kulin R, Bauska T, Harth C, Buizert C, Orsi A, Emanuele G, Lee JE, Brailsford G, Keeling R, Weiss RF.  2016.  Measurements of 14C in ancient ice from Taylor Glacier, Antarctica constrain in situ cosmogenic 14CH4 and 14CO production rates. Geochimica et Cosmochimica Acta. 177:62-77.   10.1016/j.gca.2016.01.004   Abstract

Carbon-14 (14C) is incorporated into glacial ice by trapping of atmospheric gases as well as direct near-surface in situ cosmogenic production. 14C of trapped methane (14CH4) is a powerful tracer for past CH4 emissions from “old” carbon sources such as permafrost and marine CH4 clathrates. 14C in trapped carbon dioxide (14CO2) can be used for absolute dating of ice cores. In situ produced cosmogenic 14C in carbon monoxide (14CO) can potentially be used to reconstruct the past cosmic ray flux and past solar activity. Unfortunately, the trapped atmospheric and in situ cosmogenic components of 14C in glacial ice are difficult to disentangle and a thorough understanding of the in situ cosmogenic component is needed in order to extract useful information from ice core 14C. We analyzed very large (≈1000 kg) ice samples in the 2.26–19.53 m depth range from the ablation zone of Taylor Glacier, Antarctica, to study in situ cosmogenic production of 14CH4 and 14CO. All sampled ice is >50 ka in age, allowing for the assumption that most of the measured 14C originates from recent in situ cosmogenic production as ancient ice is brought to the surface via ablation. Our results place the first constraints on cosmogenic 14CH4 production rates and improve on prior estimates of 14CO production rates in ice. We find a constant 14CH4/14CO production ratio (0.0076 ± 0.0003) for samples deeper than 3 m, which allows the use of 14CO for correcting the 14CH4 signals for the in situ cosmogenic component. Our results also provide the first unambiguous confirmation of 14C production by fast muons in a natural setting (ice or rock) and suggest that the 14C production rates in ice commonly used in the literature may be too high.

Keeling, RF.  1988.  Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: A preliminary study in urban air. Journal of Atmospheric Chemistry. 7:153-176.   10.1007/bf00048044   AbstractWebsite

On 25 and 26 October 1986 the air in Cambridge, Massachusetts was monitored for O2 and CO2 mole fraction. O2 concentrations were detected from changes in the relative refractivity of dried air between two lines of 198Hg at 2537.269 and 4359.562 Å using dual-wavelength interferometry. Changes in oxygen mole fraction were resolved with two-minute time resolution to a precision of ±2.0 ppm. Changes in O2 were shown to be strongly anticorrelated with changes in CO2 as expected for combustion processes. The demonstrated instrumental capabilities are appropriate for measuring changes in O2 mole fraction in background air which could be of importance to a broad range of biogeochemical studies.

Keeling, RF.  1991.  Mechanisms for stabilization and destabilization of a simple biosphere: catastrophe on Daisyworld. Scientists on Gaia. ( Schneider S, Boston PJ, Eds.).:118-120., Cambridge, Mass.: MIT Press Abstract
Graven, HD, Guilderson TP, Keeling RF.  2007.  Methods for high-precision 14C AMS measurement of atmospheric CO2 at LLNL. Radiocarbon. 49:349-356. AbstractWebsite

Development of radiocarbon analysis with precision better than 2%omicron has the potential to expand the utility of (CO2)-C-14 measurements for carbon cycle investigations as atmospheric gradients currently approach the typical measurement precision of 2-5%omicron. The accelerator mass spectrometer at Lawrence Livermore National Laboratory (LLNL) produces high and stable beam currents that enable efficient acquisition times for large numbers of C-14 counts. One million C-14 atoms can be detected in approximately 25 min, suggesting that near 1%omicron counting precision is economically feasible at LLNL. The overall uncertainty in measured values is ultimately determined by the variation between measured ratios in several sputtering periods of the same sample and by the reproducibility of replicate samples. Experiments on the collection of 1 million counts on replicate samples of CO2 extracted from a whole air cylinder show a standard deviation of 1.7%omicron in 36 samples measured over several wheels. This precision may be limited by the reproducibility of oxalic acid I standard samples, which is considerably poorer. We outline the procedures for high-precision sample handling and analysis that have enabled reproducibility in the cylinder extraction samples at the <2%omicron level and describe future directions to continue increasing measurement precision at LLNL.

Keeling, RF, Manning AC, McEvoy EM, Shertz SR.  1998.  Methods for measuring changes in atmospheric O2 concentration and their application in southern hemisphere air. Journal of Geophysical Research-Atmospheres. 103:3381-3397.   10.1029/97jd02537   AbstractWebsite

Methods are described for measuring changes in atmospheric O-2 concentration with emphasis on gas handling procedures. Cryogenically dried air samples are collected in 5 L glass flasks at ambient pressure and analyzed against reference gases derived from high-pressure aluminum tanks. Fractionation effects are minimized by avoiding pressure and flow variations throughout the gas-handling system. The overall external reproducibility is approximately +/-3.3 per meg, with systematic errors associated with collecting samples and with storing them for 1 year reduced to the level of 3 per meg or smaller. The demonstrated short-term reproducibly of air delivered from high-presure tanks is +/-1.5 per meg, with the composition changing by at most 5 per meg by surface desorption reactions as the tank is depleted to below 3500 kPa. A 9-year survey of a suite of six reference gases showed no systematic long-term trends in relative O-2 concentrations to the level of 5 per meg. Results are presented from samples collected at Cape Grim (41 degrees S), Macquarie Island (54 degrees S) and the South Pole Station (90 degrees S). From measurements spanning 1991-1995 it is found that the O-2 concentrations at the South Pole are on average 3.6+/-1.2 per meg higher than at Cape Grim. This result runs contrary to the expectation that the air at high southern latitudes should be depleted in O-2 as a result of O-2 uptake from the Southern Ocean and may require the existence of unknown O-2 sources near Antarctica or unexpected atmospheric transport patterns.

Manning, MR, Edmonds J, Emori S, Grubler A, Hibbard K, Joos F, Kainuma M, Keeling RF, Kram T, Manning AC, Meinshausen M, Moss R, Nakicenovic N, Riahi K, Rose SK, Smith S, Swart R, van Vuuren DP.  2010.  Misrepresentation of the IPCC CO2 emission scenarios. Nature Geoscience. 3:376-377.   10.1038/ngeo880   AbstractWebsite
Nottrott, A, Kleissl J, Keeling R.  2014.  Modeling passive scalar dispersion in the atmospheric boundary layer with WRF large-eddy simulation. Atmospheric Environment. 82:172-182.   10.1016/j.atmosenv.2013.10.026   AbstractWebsite

The ability of the Weather Research and Forecasting, large-eddy simulation model (WRF-LES) to model passive scalar dispersion from continuous sources in convective and neutral atmospheric boundary layers was investigated. WRF-LES accurately modeled mean plume trajectories and concentration fields. WRF-LES statistics of concentration fluctuations in the daytime convective boundary layer were similar to data obtained from laboratory experiments and other LES models. However, poor turbulence resolution near the surface in neutral boundary layer simulations caused under prediction of mean dispersion in the crosswind horizontal direction and over prediction of concentration variance in the neutral surface layer. A gradient in the intermittency factor for concentration fluctuations was observed near the surface, downwind of ground-level sources in the daytime boundary layer. That observation suggests that the intermittency factor is a promising metric for estimating source-sensor distance in source determination applications. (C) 2013 Elsevier Ltd. All rights reserved.

Nevison, C, Munro D, Lovenduski N, Cassar N, Keeling R, Krummel P, Tjiputra J.  2018.  Net community production in the Southern Ocean: Insights from comparing atmospheric potential oxygen to satellite ocean color algorithms and ocean models. Geophysical Research Letters. 45:10549-10559.   10.1029/2018gl079575   AbstractWebsite

The contribution of oceanic net community production (NCP) to the observed seasonal cycle in atmospheric potential oxygen (APO) is estimated at Cape Grim, Tasmania. The resulting APO(NCP) signal is compared to satellite and ocean model-based estimates of POC export and NCP across the Southern Ocean. The satellite products underestimate the amplitude of the observed APONCP seasonal cycle by more than a factor of 2. Ocean models suggest two reasons for this underestimate: (1) Current satellite products substantially underestimate the magnitude of NCP in early spring. (2) Seasonal O-2 outgassing is supported in large part by storage of carbon in DOC and living biomass. More DOC observations are needed to help evaluate this latter model prediction. Satellite products could be improved by developing seasonally dependent relationships between remote sensing chlorophyll data and in situ NCP, recognizing that the former is a measure of mass, the latter of flux. Plain Language Summary Phytoplankton in the surface ocean transform carbon dioxide into organic carbon while also producing oxygen. A fraction of the carbon is exported into the deep ocean, while the oxygen is emitted to the atmosphere. The carbon export rate influences how much carbon dioxide the ocean can absorb. The rate is commonly estimated using satellite-based phytoplankton color measured in the surface ocean, but such estimates involve many uncertain steps and assumptions. Small but detectible seasonal cycles in atmospheric oxygen have been used as an independent method for evaluating satellite-based estimates of organic carbon export. In this study, we evaluate eight satellite-derived carbon export estimates based on their ability to reproduce the observed seasonal cycle of atmospheric oxygen measured at a southeastern Australia site. All underpredict the seasonal oxygen cycle by at least a factor of 2, in part because they fail to capture the carbon and oxygen produced in early springtime and also because they focus on large particles of carbon that are heavy enough to sink while neglecting the dissolved fraction of organic carbon. Our study suggests that satellite estimates could be improved by a better understanding of seasonal variations in the relationship between phytoplankton productivity and carbon export.

Keeling, RF, Visbeck M.  2005.  Northern ice discharges and Antarctic warming: could ocean eddies provide the link? Quaternary Science Reviews. 24:1809-1820.   10.1016/j.quascirev.2005.04.005   AbstractWebsite

A mechanism is advanced for explaining the Antarctic warm events from 90 to 30ka BP which involves meltwater-induced changes in the salinity gradient across the Antarctic Circumpolar Current (ACC) and consequent changes in the poleward heat transport by ocean eddies. Based on simple linear scale analysis, the mechanism is shown to yield warming in the Antarctic interior of roughly the magnitude seen in Antarctic ice-core records (similar to 2 degrees C) in response to ice discharges into the North Atlantic. Consistent with observations, the mechanism produces gradual Antarctic warming and cooling, as dictated by the time required for salinity anomalies to build up and dissipate across the ACC. The mechanism also allows the onset of warming or cooling to be tied to changes in Atlantic overturning, which is relevant here, not for influencing ocean heat transport directly, but for influencing the routing of meltwater from the North Atlantic into the Southern Ocean. The ideas presented here highlight the possibility that eddy processes in the ocean may play a first-order role in aspects of climate variability on millennial time scales. (c) 2005 Elsevier Ltd. All rights reserved.

Stephens, BB, Long MC, Keeling RF, Kort EA, Sweeney C, Apel EC, Atlas EL, Beaton S, Bent JD, Blake NJ, Bresch JF, Casey J, Daube BC, Diao MH, Diaz E, Dierssen H, Donets V, Gao BC, Gierach M, Green R, Haag J, Hayman M, Hills AJ, Hoecker-Martinez MS, Honomichl SB, Hornbrook RS, Jensen JB, Li RR, McCubbin I, McKain K, Morgan EJ, Nolte S, Powers JG, Rainwater B, Randolph K, Reeves M, Schauffler SM, Smith K, Smith M, Stith J, Stossmeister G, Toohey DW, Watt AS.  2018.  The O-2/N-2 Ratio and CO2 Airborne Southern Ocean Study. Bulletin of the American Meteorological Society. 99:381-402.   10.1175/bams-d-16-0206.1   AbstractWebsite

The Southern Ocean plays a critical role in the global climate system by mediating atmosphere-ocean partitioning of heat and carbon dioxide. However, Earth system models are demonstrably deficient in the Southern Ocean, leading to large uncertainties in future air-sea CO2 flux projections under climate warming and incomplete interpretations of natural variability on interannual to geologic time scales. Here, we describe a recent aircraft observational campaign, the O-2/N-2 Ratio and CO2 Airborne Southern Ocean (ORCAS) study, which collected measurements over the Southern Ocean during January and February 2016. The primary research objective of the ORCAS campaign was to improve observational constraints on the seasonal exchange of atmospheric carbon dioxide and oxygen with the Southern Ocean. The campaign also included measurements of anthropogenic and marine biogenic reactive gases; high-resolution, hyperspectral ocean color imaging of the ocean surface; and microphysical data relevant for understanding and modeling cloud processes. In each of these components of the ORCAS project, the campaign has significantly expanded the amount of observational data available for this remote region. Ongoing research based on these observations will contribute to advancing our understanding of this climatically important system across a range of topics including carbon cycling, atmospheric chemistry and transport, and cloud physics. This article presents an overview of the scientific and methodological aspects of the ORCAS project and highlights early findings.

Bender, ML, Battle M, Keeling RF.  1998.  The O2 balance of the atmosphere: A tool for studying the fate of fossil-fuel CO2. Annual Review of Energy and the Environment. 23:207-223.   10.1146/   AbstractWebsite

Carbon dioxide is a radiatively active gas whose atmospheric concentration increase is likely to affect Earth's climate. CO2 is added to the atmosphere by biomass burning and the combustion of fossil fuels. Some added CO2 remains in the atmosphere. However, substantial amounts are taken up by the oceans and land biosphere, attenuating the atmospheric increase. Atmospheric O-2 measurements provide one constraint for partitioning uptake rates between the ocean and the land biosphere. Here we review studies of atmospheric O-2 concentration variations and discuss their implications for CO2 uptake by the ocean and the land biosphere. We compare estimates of anthropogenic carbon fluxes from O-2 studies with estimates from other approaches and examine the contribution of natural ocean carbon fluxes to atmospheric O-2 variations.