Export 40 results:
Sort by: Author [ Title  (Desc)] Type Year
A [B] C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Keeling, RF, Najjar RP, Bender ML, Tans PP.  1993.  What atmospheric oxygen measurements can tell us about the global carbon cycle. Global Biogeochemical Cycles. 7:37-67.   10.1029/92gb02733   AbstractWebsite

This paper explores the role that measurements of changes in atmospheric oxygen, detected through changes in the O2/N2 ratio of air, can play in improving our understanding of the global carbon cycle. Simple conceptual models are presented in order to clarify the biological and physical controls on the exchanges of O2, CO2, N2, and Ar across the air-sea interface and in order to clarify the relationships between biologically mediated fluxes of oxygen across the air-sea interface and the cycles of organic carbon in the ocean. Predictions of large-scale seasonal variations and gradients in atmospheric oxygen are presented. A two-dimensional model is used to relate changes in the O2/N2 ratio of air to the sources of oxygen from terrestrial and marine ecosystems, the thermal ingassing and outgassing of seawater, and the burning of fossil fuel. The analysis indicates that measurements of seasonal variations in atmospheric oxygen can place new constraints on the large-scale marine biological productivity. Measurements of the north-south gradient and depletion rate of atmospheric oxygen can help determine the rates and geographical distribution of the net storage of carbon in terrestrial ecosystems.

Le Quere, C, Aumont O, Bopp L, Bousquet P, Ciais P, Francey R, Heimann M, Keeling CD, Keeling RF, Kheshgi H, Peylin P, Piper SC, Prentice IC, Rayner PJ.  2003.  Two decades of ocean CO2 sink and variability. Tellus Series B-Chemical and Physical Meteorology. 55:649-656.   10.1034/j.1600-0889.2003.00043.x   AbstractWebsite

Atmospheric CO2 has increased at a nearly identical average rate of 3.3 and 3.2 Pg C yr(-1) for the decades of the 1980s and the 1990s, in spite of a large increase in fossil fuel emissions from 5.4 to 6.3 Pg C yr(-1). Thus, the sum of the ocean and land CO2 sinks was 1 Pg C yr(-1) larger in the 1990s than in to the 1980s. Here we quantify the ocean and land sinks for these two decades using recent atmospheric inversions and ocean models. The ocean and land sinks are estimated to be, respectively, 0.3 (0.1 to 0.6) and 0.7 (0.4 to 0.9) Pg C yr(-1) larger in the 1990s than in the 1980s. When variability less than 5 yr is removed, all estimates show a global oceanic sink more or less steadily increasing with time, and a large anomaly in the land sink during 1990-1994. For year-to-year variability, all estimates show 1/3 to 1/2 less variability in the ocean than on land, but the amplitude and phase of the oceanic variability remain poorly determined. A mean oceanic sink of 1.9 Pg C yr(-1) for the 1990s based on O-2 observations corrected for ocean outgassing is supported by these estimates, but an uncertainty on the mean value of the order of +/-0.7 Pg C yr(-1) remains. The difference between the two decades appears to be more robust than the absolute value of either of the two decades.

Betts, RA, Jones CD, Knight JR, Keeling RF, Kennedy JJ, Wiltshire AJ, Andrew RM, Aragao L.  2018.  A successful prediction of the record CO2 rise associated with the 2015/2016 El Nino. Philosophical Transactions of the Royal Society B-Biological Sciences. 373   10.1098/rstb.2017.0301   AbstractWebsite

In early 2016, we predicted that the annual rise in carbon dioxide concentration at Mauna Loa would be the largest on record. Our forecast used a statistical relationship between observed and forecast sea surface temperatures in the Nino 3.4 region and the annual CO2 rise. Here, we provide a formal verification of that forecast. The observed rise of 3.4 ppm relative to 2015 was within the forecast range of 3.15 +/- 0.53 ppm, so the prediction was successful. A global terrestrial biosphere model supports the expectation that the El Nino weakened the tropical land carbon sink. We estimate that the El Nino contributed approximately 25% to the record rise in CO2, with 75% due to anthropogenic emissions. The 2015/2016 CO2 rise was greater than that following the previous large El Nino in 1997/1998, because anthropogenic emissions had increased. We had also correctly predicted that 2016 would be the first year with monthly mean CO2 above 400 ppm all year round. We now estimate that atmospheric CO2 at Mauna Loa would have remained above 400 ppm all year round in 2016 even if the El Nino had not occurred, contrary to our previous expectations based on a simple extrapolation of previous trends. This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Nino on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.

Rodgers, KB, Aumont O, Fletcher SEM, Plancherel Y, Bopp L, Montegut CD, Iudicone D, Keeling RF, Madec G, Wanninkhof R.  2014.  Strong sensitivity of Southern Ocean carbon uptake and nutrient cycling to wind stirring. Biogeosciences. 11:4077-4098.   10.5194/bg-11-4077-2014   AbstractWebsite

Here we test the hypothesis that winds have an important role in determining the rate of exchange of CO2 between the atmosphere and ocean through wind stirring over the Southern Ocean. This is tested with a sensitivity study using an ad hoc parameterization of wind stirring in an ocean carbon cycle model, where the objective is to identify the way in which perturbations to the vertical density structure of the planetary boundary in the ocean impacts the carbon cycle and ocean biogeochemistry. Wind stirring leads to reduced uptake of CO2 by the Southern Ocean over the period 2000-2006, with a relative reduction with wind stirring on the order of 0.9 Pg C yr(-1) over the region south of 45 degrees S. This impacts not only the mean carbon uptake, but also the phasing of the seasonal cycle of carbon and other ocean biogeochemical tracers. Enhanced wind stirring delays the seasonal onset of stratification, and this has large impacts on both entrainment and the biological pump. It is also found that there is a strong reduction on the order of 25-30% in the concentrations of NO3 exported in Subantarctic Mode Water (SAMW) to wind stirring. This finds expression not only locally over the Southern Ocean, but also over larger scales through the impact on advected nutrients. In summary, the large sensitivity identified with the ad hoc wind stirring parameterization offers support for the importance of wind stirring for global ocean biogeochemistry through its impact over the Southern Ocean.

Fischer, ML, Parazoo N, Brophy K, Cui XG, Jeong S, Liu JJ, Keeling R, Taylor TE, Gurney K, Oda T, Graven H.  2017.  Simulating estimation of California fossil fuel and biosphere carbon dioxide exchanges combining in situ tower and satellite column observations. Journal of Geophysical Research-Atmospheres. 122:3653-3671.   10.1002/2016jd025617   AbstractWebsite

We report simulation experiments estimating the uncertainties in California regional fossil fuel and biosphere CO2 exchanges that might be obtained by using an atmospheric inverse modeling system driven by the combination of ground-based observations of radiocarbon and total CO2, together with column-mean CO2 observations from NASA's Orbiting Carbon Observatory (OCO-2). The work includes an initial examination of statistical uncertainties in prior models for CO2 exchange, in radiocarbon-based fossil fuel CO2 measurements, in OCO-2 measurements, and in a regional atmospheric transport modeling system. Using these nominal assumptions for measurement and model uncertainties, we find that flask measurements of radiocarbon and total CO2 at 10 towers can be used to distinguish between different fossil fuel emission data products for major urban regions of California. We then show that the combination of flask and OCO-2 observations yields posterior uncertainties in monthly-mean fossil fuel emissions of similar to 5-10%, levels likely useful for policy relevant evaluation of bottom-up fossil fuel emission estimates. Similarly, we find that inversions yield uncertainties in monthly biosphere CO2 exchange of similar to 6%-12%, depending on season, providing useful information on net carbon uptake in California's forests and agricultural lands. Finally, initial sensitivity analysis suggests that obtaining the above results requires control of systematic biases below approximately 0.5ppm, placing requirements on accuracy of the atmospheric measurements, background subtraction, and atmospheric transport modeling.

Resplandy, L, Keeling RF, Rodenbeck C, Stephens BB, Khatiwala S, Rodgers KB, Long MC, Bopp L, Tans PP.  2018.  Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport. Nature Geoscience. 11:504-+.   10.1038/s41561-018-0151-3   AbstractWebsite

Measurements of atmospheric CO2 concentration provide a tight constraint on the sum of the land and ocean sinks. This constraint has been combined with estimates of ocean carbon flux and riverine transport of carbon from land to oceans to isolate the land sink. Uncertainties in the ocean and river fluxes therefore translate into uncertainties in the land sink. Here, we introduce a heat-based constraint on the latitudinal distribution of ocean and river carbon fluxes, and reassess the partition between ocean, river and land in the tropics, and in the southern and northern extra-tropics. We show that the ocean overturning circulation and biological pump tightly link the ocean transports of heat and carbon between hemispheres. Using this coupling between heat and carbon, we derive ocean and river carbon fluxes compatible with observational constraints on heat transport. This heat-based constraint requires a 20-100% stronger ocean and river carbon transport from the Northern Hemisphere to the Southern Hemisphere than existing estimates, and supports an upward revision of the global riverine carbon flux from 0.45 to 0.78 PgC yr(-1). These systematic biases in existing ocean/river carbon fluxes redistribute up to 40% of the carbon sink between northern, tropical and southern land ecosystems. As a consequence, the magnitude of both the southern land source and the northern land sink may have to be substantially reduced.

Resplandy, L, Keeling RF, Eddebbar Y, Brooks MK, Wang R, Bopp L, Long MC, Dunne JP, Koeve W, Oschlies A.  2018.  Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition. Nature. 563:105-108.   10.1038/s41586-018-0651-8   Abstract

The ocean is the main source of thermal inertia in the climate system1. During recent decades, ocean heat uptake has been quantified by using hydrographic temperature measurements and data from the Argo float program, which expanded its coverage after 20072,3. However, these estimates all use the same imperfect ocean dataset and share additional uncertainties resulting from sparse coverage, especially before 20074,5. Here we provide an independent estimate by using measurements of atmospheric oxygen (O2) and carbon dioxide (CO2)—levels of which increase as the ocean warms and releases gases—as a whole-ocean thermometer. We show that the ocean gained 1.33 ± 0.20  × 1022 joules of heat per year between 1991 and 2016, equivalent to a planetary energy imbalance of 0.83 ± 0.11 watts per square metre of Earth’s surface. We also find that the ocean-warming effect that led to the outgassing of O2 and CO2 can be isolated from the direct effects of anthropogenic emissions and CO2 sinks. Our result—which relies on high-precision O2 measurements dating back to 19916—suggests that ocean warming is at the high end of previous estimates, with implications for policy-relevant measurements of the Earth response to climate change, such as climate sensitivity to greenhouse gases7 and the thermal component of sea-level rise8.

Langenfelds, RL, Francey RJ, Steele LP, Battle M, Keeling RF, Budd WF.  1999.  Partitioning of the global fossil CO2 sink using a 19-year trend in atmospheric O2. Geophysical Research Letters. 26:1897-1900.   10.1029/1999gl900446   AbstractWebsite

O-2/N-2 is measured in the Cape Grim Air Archive (CGAA), a suite of tanks filled with background air at Cape Grim, Tasmania (40.7 degrees S, 144.8 degrees E) between April 1978 and January 1997. Derived trends are compared with published O-2/N-2 records and assessed against limits on interannual variability of net terrestrial exchanges imposed by trends of delta(13)C in CO2. Two old samples from 1978 and 1987 and eight from 1996/97 survive critical selection criteria and give a mean 19-year trend in delta(O-2/N-2) of -16.7 +/- 0.5 per meg y(-1), implying net storage of +2.3 +/- 0.7 GtC (10(15) g carbon) yr(-1) of fossil fuel CO2 in the oceans and +0.2 +/- 0.9 GtC yr(-1) in the terrestrial biosphere. The uptake terms are consistent for both O-2/N-2 and delta(13)C tracers if the mean C-13 isotopic disequilibrium flux, combining terrestrial and oceanic contributions, is 93 +/- 15 GtC parts per thousand yr(-1).

Tans, PP, Berry JA, Keeling RF.  1993.  Oceanic 13C/12C observations: A new window on ocean CO2 uptake. Global Biogeochemical Cycles. 7:353-368.   10.1029/93gb00053   AbstractWebsite

Equations are developed describing the rate of change of carbon isotopic ratios in the atmosphere and oceans in terms of deltaC-13 quantities. The equations enable one to perform calculations directly with delta and epsilon quantities commonly reported in the literature. The main cause of the change occurring today is the combustion of fossil fuel carbon with lower deltaC-13 values. The course of this isotopic anomaly in atmosphere and oceans can provide new constraints on the carbon budgets of these reservoirs. Recently published deltaC-13 isotopic data of total inorganic carbon in the oceans [Quay et al., 1992] appear to lead to incompatible results with respect to the uptake of fossil fuel CO2 by the oceans if two different approaches Lo the data are taken. Consideration of the air-sea isotopic disequilibrium leads to an uptake estimate of only a few tenths of a gigaton C (Gt, for 10(15) g) per year, whereas the apparent change in the ocean deltaC-13 inventory leads to an estimate of more than 2 Gt C yr-1. Both results are very uncertain with presently available data. The isotopic ratio has the advantage that the signal-to-noise ratio for the measurement of the uptake of the isotopic signal by the oceans is better than for the uptake of total carbon. The drawback is that isotopic exchange with carbon reservoirs that are difficult to characterize introduces uncertainty into the isotopic budget. The accuracy requirements for the measurements are high, demanding careful standardization at all stages.

Bender, ML, Battle M, Keeling RF.  1998.  The O2 balance of the atmosphere: A tool for studying the fate of fossil-fuel CO2. Annual Review of Energy and the Environment. 23:207-223.   10.1146/   AbstractWebsite

Carbon dioxide is a radiatively active gas whose atmospheric concentration increase is likely to affect Earth's climate. CO2 is added to the atmosphere by biomass burning and the combustion of fossil fuels. Some added CO2 remains in the atmosphere. However, substantial amounts are taken up by the oceans and land biosphere, attenuating the atmospheric increase. Atmospheric O-2 measurements provide one constraint for partitioning uptake rates between the ocean and the land biosphere. Here we review studies of atmospheric O-2 concentration variations and discuss their implications for CO2 uptake by the ocean and the land biosphere. We compare estimates of anthropogenic carbon fluxes from O-2 studies with estimates from other approaches and examine the contribution of natural ocean carbon fluxes to atmospheric O-2 variations.

Stephens, BB, Long MC, Keeling RF, Kort EA, Sweeney C, Apel EC, Atlas EL, Beaton S, Bent JD, Blake NJ, Bresch JF, Casey J, Daube BC, Diao MH, Diaz E, Dierssen H, Donets V, Gao BC, Gierach M, Green R, Haag J, Hayman M, Hills AJ, Hoecker-Martinez MS, Honomichl SB, Hornbrook RS, Jensen JB, Li RR, McCubbin I, McKain K, Morgan EJ, Nolte S, Powers JG, Rainwater B, Randolph K, Reeves M, Schauffler SM, Smith K, Smith M, Stith J, Stossmeister G, Toohey DW, Watt AS.  2018.  The O-2/N-2 Ratio and CO2 Airborne Southern Ocean Study. Bulletin of the American Meteorological Society. 99:381-402.   10.1175/bams-d-16-0206.1   AbstractWebsite

The Southern Ocean plays a critical role in the global climate system by mediating atmosphere-ocean partitioning of heat and carbon dioxide. However, Earth system models are demonstrably deficient in the Southern Ocean, leading to large uncertainties in future air-sea CO2 flux projections under climate warming and incomplete interpretations of natural variability on interannual to geologic time scales. Here, we describe a recent aircraft observational campaign, the O-2/N-2 Ratio and CO2 Airborne Southern Ocean (ORCAS) study, which collected measurements over the Southern Ocean during January and February 2016. The primary research objective of the ORCAS campaign was to improve observational constraints on the seasonal exchange of atmospheric carbon dioxide and oxygen with the Southern Ocean. The campaign also included measurements of anthropogenic and marine biogenic reactive gases; high-resolution, hyperspectral ocean color imaging of the ocean surface; and microphysical data relevant for understanding and modeling cloud processes. In each of these components of the ORCAS project, the campaign has significantly expanded the amount of observational data available for this remote region. Ongoing research based on these observations will contribute to advancing our understanding of this climatically important system across a range of topics including carbon cycling, atmospheric chemistry and transport, and cloud physics. This article presents an overview of the scientific and methodological aspects of the ORCAS project and highlights early findings.

Cui, YY, Vijayan A, Falk M, Hsu YK, Yin DZ, Chen XM, Zhao Z, Avise J, Chen YJ, Verhulst K, Duren R, Yadav V, Miller C, Weiss R, Keeling R, Kim J, Iraci LT, Tanaka T, Johnson MS, Kort EA, Bianco L, Fischer ML, Stroud K, Herner J, Croes B.  2019.  A multiplatform inversion estimation of statewide and regional methane emissions in California during 2014-2016. Environmental Science & Technology. 53:9636-9645.   10.1021/acs.est.9b01769   AbstractWebsite

California methane (CH4) emissions are quantified for three years from two tower networks and one aircraft campaign. We used backward trajectory simulations and a mesoscale Bayesian inverse model, Mbring ratios (VI ' initialized by three inventories, to achieve the emission quantification. Results show total statewide CH4 emissions of 2.05 +/- 0.26 (at 95% confidence) Tg/yr, which is 1.14 to 1.47 times greater than the anthropogenic emission estimates by California Air Resource Board (GARB). Some of differences could be biogenic emissions, superemitter point sources, and other episodic emissions which may not be completely included in the CARB inventory. San Joaquin Valley (SJV) has the largest CH4 emissions (0.94 +/- 0.18 Tg/yr), followed by the South Coast Air Basin, the Sacramento Valley, and the San Francisco Bay Area at 0.39 +/- 0.18, 0.21 +/- 0.04, and 0.16 +/- 0.05 Tg/yr, respectively. The dairy and oil/gas production sources in the SJV contribute 0.44 +/- 0.36 and 0.22 +/- 0.23 Tg CH4/yr, respectively. This study has important policy implications for regulatory programs, as it provides a thorough multiyear evaluation of the emissions inventory using independent atmospheric measurements and investigates the utility of a complementary multiplatform approach in understanding the spatial and temporal patterns of CH4 emissions in the state and identifies opportunities for the expansion and applications of the monitoring network.

Keeling, RF.  1991.  Mechanisms for stabilization and destabilization of a simple biosphere: catastrophe on Daisyworld. Scientists on Gaia. ( Schneider S, Boston PJ, Eds.).:118-120., Cambridge, Mass.: MIT Press Abstract
Petrenko, VV, Severinghaus JP, Schaefer H, Smith AM, Kuhl T, Baggenstos D, Hua Q, Brook EJ, Rose P, Kulin R, Bauska T, Harth C, Buizert C, Orsi A, Emanuele G, Lee JE, Brailsford G, Keeling R, Weiss RF.  2016.  Measurements of 14C in ancient ice from Taylor Glacier, Antarctica constrain in situ cosmogenic 14CH4 and 14CO production rates. Geochimica et Cosmochimica Acta. 177:62-77.   10.1016/j.gca.2016.01.004   Abstract

Carbon-14 (14C) is incorporated into glacial ice by trapping of atmospheric gases as well as direct near-surface in situ cosmogenic production. 14C of trapped methane (14CH4) is a powerful tracer for past CH4 emissions from “old” carbon sources such as permafrost and marine CH4 clathrates. 14C in trapped carbon dioxide (14CO2) can be used for absolute dating of ice cores. In situ produced cosmogenic 14C in carbon monoxide (14CO) can potentially be used to reconstruct the past cosmic ray flux and past solar activity. Unfortunately, the trapped atmospheric and in situ cosmogenic components of 14C in glacial ice are difficult to disentangle and a thorough understanding of the in situ cosmogenic component is needed in order to extract useful information from ice core 14C. We analyzed very large (≈1000 kg) ice samples in the 2.26–19.53 m depth range from the ablation zone of Taylor Glacier, Antarctica, to study in situ cosmogenic production of 14CH4 and 14CO. All sampled ice is >50 ka in age, allowing for the assumption that most of the measured 14C originates from recent in situ cosmogenic production as ancient ice is brought to the surface via ablation. Our results place the first constraints on cosmogenic 14CH4 production rates and improve on prior estimates of 14CO production rates in ice. We find a constant 14CH4/14CO production ratio (0.0076 ± 0.0003) for samples deeper than 3 m, which allows the use of 14CO for correcting the 14CH4 signals for the in situ cosmogenic component. Our results also provide the first unambiguous confirmation of 14C production by fast muons in a natural setting (ice or rock) and suggest that the 14C production rates in ice commonly used in the literature may be too high.

Battle, M, Bender M, Hendricks MB, Ho DT, Mika R, McKinley G, Fan SM, Blaine T, Keeling RF.  2003.  Measurements and models of the atmospheric Ar/N2 ratio. Geophysical Research Letters. 30   10.1029/2003gl017411   AbstractWebsite

[1] The Ar/N-2 ratio of air measured at 6 globally distributed sites shows annual cycles with amplitudes of 12 to 37 parts in 10(6). Summertime maxima reflect the atmospheric Ar enrichment driven by seasonal warming and degassing of the oceans. Paired models of air-sea heat fluxes and atmospheric tracer transport predict seasonal cycles in the Ar/N-2 ratio that agree with observations, within uncertainties.

Keeling, RF, Blaine T, Paplawsky B, Katz L, Atwood C, Brockwell T.  2004.  Measurement of changes in atmospheric Ar/N2 ratio using a rapid-switching, single-capillary mass spectrometer system. Tellus Series B-Chemical and Physical Meteorology. 56:322-338.   10.1111/j.1600-0889.2004.00117.x   AbstractWebsite

The atmospheric Ar/N-2 ratio is expected to undergo very slight variations due to exchanges of Ar and N-2 across the air-sea interface, driven by ocean solubility changes. Observations of these variations may provide useful constraints on large-scale fluxes of heat across the air-sea interface. A mass spectrometer system is described that incorporates a magnet with a wide exit face, allowing a large mass spread, and incorporates an inlet with rapid (5 s) switching of sources gases through a single capillary, thus achieving high precision in the comparison of sample and reference gases. The system allows simultaneous measurement of Ar/N-2, O-2/N, and CO2/N-2 ratios. The system achieves a short-term precision in Ar/N-2 of 10 per meg for a 10 s integration, which can be averaged to achieve an internal precision of a few per meg in the comparison of reference gases. Results for Ar/N-2 are reported from flasks samples collected from nine stations in a north-to-south global network over about a 1 yr period. The imprecision on an individual flask, as estimated from replicate agreement, is 11 per meg. This imprecision is dominated by real variability between samples at the time of analysis. Seasonal cycles are marginally resolved at the extra-tropical stations with amplitudes of 5 to 15 per meg. Annual-mean values are constant between stations to within 5 per meg. The results are compared with a numerical simulation of the cycles and gradients in Ar/N-2 based on the TM2 tracer transport model in combination with air-sea Ar and N-2 fluxes derived from climatological air-sea heat fluxes. The possibility is suggested that Ar/N-2 ratios may be detectably enriched near the ground by gravimetric or thermal fractionation under conditions of strong surface inversions.

Keeling, RF, Blaine T, Paplawsky B, Katz L, Atwood C, Brockwell T.  2006.  Measurement of changes in atmospheric Ar/N2 ratio using a rapid-switching, single-capillary mass spectrometer system (vol 56B, pg 322, 2006). Tellus Series B-Chemical and Physical Meteorology. 58:255-255.   10.1111/j.1600-0889.2006.00190.x   AbstractWebsite
Welp, LR, Keeling RF, Meijer HAJ, Bollenbacher AF, Piper SC, Yoshimura K, Francey RJ, Allison CE, Wahlen M.  2011.  Interannual variability in the oxygen isotopes of atmospheric CO2 driven by El Nino. Nature. 477:579-582.   10.1038/nature10421   AbstractWebsite

The stable isotope ratios of atmospheric CO2 (O-18/O-16 and C-13/C-12) have been monitored since 1977 to improve our understanding of the global carbon cycle, because biosphere-atmosphere exchange fluxes affect the different atomic masses in a measurable way(1). Interpreting the O-18/O-16 variability has proved difficult, however, because oxygen isotopes in CO2 are influenced by both the carbon cycle and the water cycle(2). Previous attention focused on the decreasing O-18/O-16 ratio in the 1990s, observed by the global Cooperative Air Sampling Network of the US National Oceanic and Atmospheric Administration Earth System Research Laboratory. This decrease was attributed variously to a number of processes including an increase in Northern Hemisphere soil respiration(3); a global increase in C-4 crops at the expense of C-3 forests(4); and environmental conditions, such as atmospheric turbulence(5) and solar radiation(6), that affect CO2 exchange between leaves and the atmosphere. Here we present 30 years' worth of data on O-18/O-16 in CO2 from the Scripps Institution of Oceanography global flask network and show that the interannual variability is strongly related to the El Nino/Southern Oscillation. We suggest that the redistribution of moisture and rainfall in the tropics during an El Nino increases the O-18/O-16 ratio of precipitation and plant water, and that this signal is then passed on to atmospheric CO2 by biosphere-atmosphere gas exchange. We show how the decay time of the El Nino anomaly in this data set can be useful in constraining global gross primary production. Our analysis shows a rapid recovery from El Nino events, implying a shorter cycling time of CO2 with respect to the terrestrial biosphere and oceans than previously estimated. Our analysis suggests that current estimates of global gross primary production, of 120 petagrams of carbon per year(7), may be too low, and that a best guess of 150-175 petagrams of carbon per year better reflects the observed rapid cycling of CO2. Although still tentative, such a revision would present a new benchmark by which to evaluate global biospheric carbon cycling models.

Rodenbeck, C, Bakker DCE, Metzl N, Olsen A, Sabine C, Cassar N, Reum F, Keeling RF, Heimann M.  2014.  Interannual sea-air CO2 flux variability from an observation-driven ocean mixed-layer scheme. Biogeosciences. 11:4599-4613.   10.5194/bg-11-4599-2014   AbstractWebsite

Interannual anomalies in the sea-air carbon dioxide (CO2) exchange have been estimated from surface-ocean CO2 partial pressure measurements. Available data are sufficient to constrain these anomalies in large parts of the tropical and North Pacific and in the North Atlantic, in some areas covering the period from the mid 1980s to 2011. Global interannual variability is estimated as about 0.31 Pg Cyr(-1) (temporal standard deviation 1993-2008). The tropical Pacific accounts for a large fraction of this global variability, closely tied to El Ni o-Southern Oscillation (ENSO). Anomalies occur more than 6 months later in the east than in the west. The estimated amplitude and ENSO response are roughly consistent with independent information from atmospheric oxygen data. This both supports the variability estimated from surface-ocean carbon data and demonstrates the potential of the atmospheric oxygen signal to constrain ocean biogeochemical processes. The ocean variability estimated from surface-ocean carbon data can be used to improve land CO2 flux estimates from atmospheric inversions.

Welp, LR, Patra PK, Rodenbeck C, Nemani R, Bi J, Piper SC, Keeling RF.  2016.  Increasing summer net CO2 uptake in high northern ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NDVI. Atmospheric Chemistry and Physics. 16:9047-9066.   10.5194/acp-16-9047-2016   AbstractWebsite

Warmer temperatures and elevated atmospheric CO2 concentrations over the last several decades have been credited with increasing vegetation activity and photosynthetic uptake of CO2 from the atmosphere in the high northern latitude ecosystems: the boreal forest and arctic tundra. At the same time, soils in the region have been warming, permafrost is melting, fire frequency and severity are increasing, and some regions of the boreal forest are showing signs of stress due to drought or insect disturbance. The recent trends in net carbon balance of these ecosystems, across heterogeneous disturbance patterns, and the future implications of these changes are unclear. Here, we examine CO2 fluxes from northern boreal and tundra regions from 1985 to 2012, estimated from two atmospheric inversions (RIGC and Jena). Both used measured atmospheric CO2 concentrations and wind fields from interannually variable climate reanalysis. In the arctic zone, the latitude region above 60 degrees N excluding Europe (10 degrees W-63 degrees E), neither inversion finds a significant long-term trend in annual CO2 balance. The boreal zone, the latitude region from approximately 50-60 degrees N, again excluding Europe, showed a trend of 8-11 Tg C yr(-2) over the common period of validity from 1986 to 2006, resulting in an annual CO2 sink in 2006 that was 170-230 Tg C yr(-1) larger than in 1986. This trend appears to continue through 2012 in the Jena inversion as well. In both latitudinal zones, the seasonal amplitude of monthly CO2 fluxes increased due to increased uptake in summer, and in the arctic zone also due to increased fall CO2 release. These findings suggest that the boreal zone has been maintaining and likely increasing CO2 sink strength over this period, despite browning trends in some regions and changes in fire frequency and land use. Meanwhile, the arctic zone shows that increased summer CO2 uptake, consistent with strong greening trends, is offset by increased fall CO2 release, resulting in a net neutral trend in annual fluxes. The inversion fluxes from the arctic and boreal zones covering the permafrost regions showed no indication of a large-scale positive climate-carbon feedback caused by warming temperatures on high northern latitude terrestrial CO2 fluxes from 1985 to 2012.

Blaine, TW, Keeling RF, Paplawsky WJ.  2006.  An improved inlet for precisely measuring the atmospheric Ar/N2 ratio. Atmospheric Chemistry and Physics. 6:1181-1184. AbstractWebsite

The atmospheric Ar/N-2 ratio is expected to be useful as a tracer of air-sea heat exchange, but this application has been hindered in part due to sampling artifacts. Here we show that the variability in delta(Ar/N-2) due to thermal fractionation at the inlet can be on the order of 40 - 80 per meg, and we introduce the use of an aspirated solar shield that successfully minimizes such fractionation. The data collected using this new inlet have a mean diurnal cycle of 1.0 per meg or less, suggesting that any residual thermal fractionation effect is reduced to this level.

Reid, PC, Fischer AC, Lewis-Brown E, Meredith MP, Sparrow M, Andersson AJ, Antia A, Bates NR, Bathmann U, Beaugrand G, Brix H, Dye S, Edwards M, Furevik T, Gangsto R, Hatun H, Hopcroft RR, Kendall M, Kasten S, Keeling R, Le Quere C, Mackenzie FT, Malin G, Mauritzen C, Olafsson J, Paull C, Rignot E, Shimada K, Vogt M, Wallace C, Wang ZM, Washington R.  2009.  Impacts of the Oceans on Climate Change. Advances in Marine Biology. 56( Sims DW, Ed.).:1-150., San Diego: Elsevier Academic Press Inc   10.1016/s0065-2881(09)56001-4   Abstract

The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the world there has been an accelerating change in sea temperatures over the last few decades, which has contributed to rising sea-level. The oceans are also the main store of carbon dioxide (CO(2)), and are estimated to have taken up similar to 40% of anthropogenic-sourced CO(2) from the atmosphere since the beginning of the industrial revolution. A proportion of the carbon uptake is exported via the four ocean 'carbon pumps' (Solubility, Biological, Continental Shelf and Carbonate Counter) to the deep ocean reservoir. Increases in sea temperature and changing planktonic systems and ocean currents may lead to a reduction in the uptake of CO(2) by the ocean; some evidence suggests a suppression of parts of the marine carbon sink is already underway. While the oceans have buffered climate change through the uptake of CO(2) produced by fossil fuel burning this has already had an impact on ocean chemistry through ocean acidification and will continue to do so. Feedbacks to climate change from acidification may result from expected impacts on marine organisms (especially corals and calcareous plankton), ecosystems and biogeochemical cycles. The polar regions of the world are showing the most rapid responses to climate change. As a result of a strong ice-ocean influence, small changes in temperature, salinity and ice cover may trigger large and sudden changes in regional climate with potential downstream feedbacks to the climate of the rest of the world. A warming Arctic Ocean may lead to further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO(2) and limit temperature rise over the next century will be underestimated.

Rodenbeck, C, Keeling RF, Bakker DCE, Metz N, Olsen A, Sabine C, Heimann M.  2013.  Global surface-ocean p(CO2) and sea-air CO2 flux variability from an observation-driven ocean mixed-layer scheme. Ocean Science. 9:193-216.   10.5194/os-9-193-2013   AbstractWebsite

A temporally and spatially resolved estimate of the global surface-ocean CO2 partial pressure field and the sea air CO2 flux is presented, obtained by fitting a simple data-driven diagnostic model of ocean mixed-layer biogeochemistry to surface-ocean CO2 partial pressure data from the SOCAT v1.5 database. Results include seasonal, interannual, and short-term (daily) variations. In most regions, estimated seasonality is well constrained from the data, and compares well to the widely used monthly climatology by Takahashi et al. (2009). Comparison to independent data tentatively supports the slightly higher seasonal variations in our estimates in some areas. We also fitted the diagnostic model to atmospheric CO2 data. The results of this are less robust, but in those areas where atmospheric signals are not strongly influenced by land flux variability, their seasonality is nevertheless consistent with the results based on surface-ocean data. From a comparison with an independent seasonal climatology of surface-ocean nutrient concentration, the diagnostic model is shown to capture relevant surface-ocean biogeochemical processes reasonably well. Estimated interannual variations will be presented and discussed in a companion paper.

Le Quere, C, Andrew RM, Friedlingstein P, Sitch S, Hauck J, Pongratz J, Pickers PA, Korsbakken JI, Peters GP, Canadell JG, Arneth A, Arora VK, Barbero L, Bastos A, Bopp L, Chevallier F, Chini LP, Ciais P, Doney SC, Gkritzalis T, Goll DS, Harris I, Haverd V, Hoffman FM, Hoppema M, Houghton RA, Hurtt G, Ilyina T, Jain AK, Johannessen T, Jones CD, Kato E, Keeling RF, Goldewijk KK, Landschutzer P, Lefevre N, Lienert S, Liu Z, Lombardozzi D, Metzl N, Munro DR, Nabel J, Nakaoka S, Neill C, Olsen A, Ono T, Patra P, Peregon A, Peters W, Peylin P, Pfeil B, Pierrot D, Poulter B, Rehder G, Resplandy L, Robertson E, Rocher M, Rodenbeck C, Schuster U, Schwinger J, Seferian R, Skjelvan I, Steinhoff T, Sutton A, Tans PP, Tian HQ, Tilbrook B, Tubiello FN, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Wright R, Zaehle S, Zheng B.  2018.  Global Carbon Budget 2018. Earth System Science Data. 10:2141-2194.   10.5194/essd-10-2141-2018   AbstractWebsite

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (E-FF) are based on energy statistics and cement production data, while emissions from land use and land-use change (E-LUC), mainly deforestation, are based on land use and land -use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (G(ATM)) is computed from the annual changes in concentration. The ocean CO2 sink (S-OCEAN) and terrestrial CO2 sink (S-LAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (B-IM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as +/- 1 sigma. For the last decade available (2008-2017), E-FF was 9.4 +/- 0.5 GtC yr(-1), E-LUC 1.5 +/- 0.7 GtC yr(-1), G(ATM) 4.7 +/- 0.02 GtC yr(-1), S-OCEAN 2.4 +/- 0.5 GtC yr(-1), and S-LAND 3.2 +/- 0.8 GtC yr(-1), with a budget imbalance B-IM of 0.5 GtC yr(-1) indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in E-FF was about 1.6 % and emissions increased to 9.9 +/- 0.5 GtC yr(-1). Also for 2017, E-LUC was 1.4 +/- 0.7 GtC yr(-1), G(ATM) was 4.6 +/- 0.2 GtC yr(-1), S-OCEAN was 2.5 +/- 0.5 GtC yr(-1), and S-LAND was 3.8 +/- 0.8 GtC yr(-1), with a B-IM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0 +/- 0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6-9 months indicate a renewed growth in E-FF of +2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959-2017, but discrepancies of up to 1 GtC yr(-1) persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land -use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quere et al., 2018, 2016, 2015a, b, 2014, 2013). All results presented here can be downloaded from

Le Quere, C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J, Manning AC, Korsbakken JI, Peters GP, Canadell JG, Jackson RB, Boden TA, Tans PP, Andrews OD, Arora VK, Bakker DCE, Barbero L, Becker M, Betts RA, Bopp L, Chevallier F, Chini LP, Ciais P, Cosca CE, Cross J, Currie K, Gasser T, Harris I, Hauck J, Haverd V, Houghton RA, Hunt CW, Hurtt G, Ilyina T, Jain AK, Kato E, Kautz M, Keeling RF, Goldewijk KK, Kortzinger A, Landschutzer P, Lefevre N, Lenton A, Lienert S, Lima I, Lombardozzi D, Metzl N, Millero F, Monteiro PMS, Munro DR, Nabel J, Nakaoka S, Nojiri Y, Padin XA, Peregon A, Pfeil B, Pierrot D, Poulter B, Rehder G, Reimer J, Rodenbeck C, Schwinger J, Seferian R, Skjelvan I, Stocker BD, Tian HQ, Tilbrook B, Tubiello FN, van der Laan-Luijkx IT, van der Werf GR, van Heuven S, Viovy N, Vuichard N, Walker AP, Watson AJ, Wiltshire AJ, Zaehle S, Zhu D.  2018.  Global Carbon Budget 2017. Earth System Science Data. 10:405-448.   10.5194/essd-10-405-2018   AbstractWebsite

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (E-FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (E-LUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G(ATM)) is computed from the annual changes in concentration. The ocean CO2 sink (S-OCEAN) and terrestrial CO2 sink (S-LAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (B-IM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as +/- 1 sigma. For the last decade available (2007-2016), E-FF was 9.4 +/- 0.5 GtC yr(-1), E-LUC 1.3 +/- 0.7 GtC yr(-1), G(ATM) 4.7 +/- 0.1 GtC yr(-1), S-OCEAN 2.4 +/- 0.5 GtC yr(-1), and S-LAND 3.0 +/- 0.8 GtC yr(-1), with a budget imbalance B-IM of 0.6 GtC yr(-1) indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in E-FF was approximately zero and emissions remained at 9.9 +/- 0.5 GtC yr(-1). Also for 2016, E-LUC was 1.3 +/- 0.7 GtC yr(-1), G(ATM) was 6.1 +/- 0.2 GtC yr(-1), S-OCEAN was 2.6 +/- 0.5 GtC yr(-1), and S-LAND was 2.7 +/- 1.0 GtC yr(-1), with a small B-IM of 0.3 GtC. G(ATM) continued to be higher in 2016 compared to the past decade (2007-2016), reflecting in part the high fossil emissions and the small S-LAND consistent with El Nino conditions. The global atmospheric CO2 concentration reached 402.8 +/- 0.1 ppm averaged over 2016. For 2017, preliminary data for the first 6-9 months indicate a renewed growth in E-FF of +2.0% (range of 0.8 to 3.0 %) based on national emissions projections for China, USA, and India, and projections of gross domestic product (GDP) corrected for recent changes in the carbon intensity of the economy for the rest of the world. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quere et al., 2016, 2015b, a, 2014, 2013). All results presented here can be downloaded from (GCP, 2017).