Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Fiedler, JW, Smit PB, Brodie KL, McNinch J, Guza RT.  2019.  The offshore boundary condition in surf zone modeling. Coastal Engineering. 143:12-20.   10.1016/j.coastaleng.2018.10.014   AbstractWebsite

Numerical models predicting surfzone waves and shoreline runup in field situations are often initialized with shoreward propagating (sea-swell, and infragravity) waves at an offshore boundary in 10-30 m water depth. We develop an offshore boundary condition, based on Fourier analysis of observations with co-located current and pressure sensors, that accounts for reflection and includes nonlinear phase-coupling. The performance of additional boundary conditions derived with limited or no infragravity observations are explored with the wave resolving, nonlinear model SWASH 1D. In some cases errors in the reduced boundary conditions (applied in 11 m depth) propagate shoreward, whereas in other cases errors are localized near the offshore boundary. Boundary conditions that can be implemented without infragravity observations (e.g. bound waves) do not accurately simulate infragravity waves across the surfzone, and could corrupt predictions of morphologic change. However, the bulk properties of infragravity waves in the inner surfzone and runup are predicted to be largely independent of ig offshore boundary conditions, and dominated by ig generation and dissipation.

Apotsos, A, Raubenheimer B, Elgar S, Guza RT.  2008.  Wave-driven setup and alongshore flows observed onshore of a submarine canyon. Journal of Geophysical Research-Oceans. 113   10.1029/2007jc004514   AbstractWebsite

The effect of alongshore variations in the incident wavefield on wave-driven setup and on alongshore flows in the surfzone is investigated using observations collected onshore of a submarine canyon. Wave heights and radiation stresses at the outer edge of the surfzone (water depth approximate to 2.5 m) varied by up to a factor of 4 and 16, respectively, over a 450 m alongshore distance, resulting in setup variations as large as 0.1 m along the shoreline (water depth approximate to 0.3 m). Even with this strong alongshore variability, wave-driven setup was dominated by the cross-shore gradient of the wave radiation stress, and setup observed in the surfzone is predicted well by a one-dimensional cross-shore momentum balance. Both cross-shore radiation stress gradients and alongshore setup gradients contributed to the alongshore flows observed in the inner surfzone when alongshore gradients in offshore wave heights were large, and a simplified alongshore momentum balance suggests that the large [O(1 kg/(s(2) m)] observed setup-induced pressure gradients can drive strong [O(1 m/s)] alongshore currents.