Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Feddersen, F, Clark DB, Guza RT.  2011.  Modeling surf zone tracer plumes: 1. Waves, mean currents, and low-frequency eddies. Journal of Geophysical Research-Oceans. 116   10.1029/2011jc007210   AbstractWebsite

A model that accurately simulates surf zone waves, mean currents, and low-frequency eddies is required to diagnose the mechanisms of surf zone tracer transport and dispersion. In this paper, a wave-resolving time-dependent Boussinesq model is compared with waves and currents observed during five surf zone dye release experiments. In a companion paper, Clark et al. (2011) compare a coupled tracer model to the dye plume observations. The Boussinesq model uses observed bathymetry and incident random, directionally spread waves. For all five releases, the model generally reproduces the observed cross-shore evolution of significant wave height, mean wave angle, bulk directional spread, mean alongshore current, and the frequency-dependent sea surface elevation spectra and directional moments. The largest errors are near the shoreline where the bathymetry is most uncertain. The model also reproduces the observed cross-shore structure of rotational velocities in the infragravity (0.004 < f < 0.03 Hz) and very low frequency (VLF) (0.001 < f < 0.004 Hz) bands, although the modeled VLF energy is 2-3 times too large. Similar to the observations, the dominant contributions to the modeled eddy-induced momentum flux are in the VLF band. These eddies are elliptical near the shoreline and circular in the mid surf zone. The model-data agreement for sea swell waves, low-frequency eddies, and mean currents suggests that the model is appropriate for simulating surf zone tracer transport and dispersion.

Thomson, J, Elgar S, Herbers THC, Raubenheimer B, Guza RT.  2007.  Refraction and reflection of infragravity waves near submarine canyons. Journal of Geophysical Research-Oceans. 112   10.1029/2007jc004227   AbstractWebsite

[1] The propagation of infragravity waves ( ocean surface waves with periods from 20 to 200 s) over complex inner shelf ( water depths from about 3 to 50 m) bathymetry is investigated with field observations from the southern California coast. A wave-ray-path-based model is used to describe radiation from adjacent beaches, refraction over slopes ( smooth changes in bathymetry), and partial reflection from submarine canyons ( sharp changes in bathymetry). In both the field observations and the model simulations the importance of the canyons depends on the directional spectrum of the infragravity wave field radiating from the shoreline and on the distance from the canyons. Averaged over the wide range of conditions observed, a refraction-only model has reduced skill near the abrupt bathymetry, whereas a combined refraction and reflection model accurately describes the distribution of infragravity wave energy on the inner shelf, including the localized effects of steep-walled submarine canyons.

Thomson, J, Elgar S, Raubenheimer B, Herbers THC, Guza RT.  2006.  Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophysical Research Letters. 33   10.1029/2005gl025514   AbstractWebsite

The strong tidal modulation of infragravity (200 to 20 s period) waves observed on the southern California shelf is shown to be the result of nonlinear transfers of energy from these low-frequency long waves to higher-frequency motions. The energy loss occurs in the surfzone, and is stronger as waves propagate over the convex low-tide beach profile than over the concave high-tide profile, resulting in a tidal modulation of seaward-radiated infragravity energy. Although previous studies have attributed infragravity energy losses in the surfzone to bottom drag and turbulence, theoretical estimates using both observations and numerical simulations suggest nonlinear transfers dominate. The observed beach profiles and energy transfers are similar along several km of the southern California coast, providing a mechanism for the tidal modulation of infragravity waves observed in bottom-pressure and seismic records on the continental shelf and in the deep ocean.

Feddersen, F, Guza RT, Elgar S.  2004.  Inverse modeling of one-dimensional setup and alongshore current in the nearshore. Journal of Physical Oceanography. 34:920-933.   10.1175/1520-0485(2004)034<0920:imoosa>;2   AbstractWebsite

Inverse models are developed that use data and dynamics to estimate optimally the breaking-wave-driven setup and alongshore current, as well as the cross-shore forcing, alongshore forcing, and drag coefficient. The inverse models accurately reproduce these quantities in a synthetic barred-beach example. The method is applied to one case example each from the Duck94 and SandyDuck field experiments. Both inverse solutions pass consistency tests developed for the inverse method and have forcing corrections similar to a roller model and significant cross-shore variation of the drag coefficient. The inverse drag coefficient is related to the wave dissipation, a bulk measure of the turbulence source, but not to the bed roughness, consistent with the hypothesis that breaking- wave-generated turbulence increases the drag coefficient. Inverse solutions from a wider range of conditions are required to establish the generality of these results.