Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2019
Fiedler, JW, Smit PB, Brodie KL, McNinch J, Guza RT.  2019.  The offshore boundary condition in surf zone modeling. Coastal Engineering. 143:12-20.   10.1016/j.coastaleng.2018.10.014   AbstractWebsite

Numerical models predicting surfzone waves and shoreline runup in field situations are often initialized with shoreward propagating (sea-swell, and infragravity) waves at an offshore boundary in 10-30 m water depth. We develop an offshore boundary condition, based on Fourier analysis of observations with co-located current and pressure sensors, that accounts for reflection and includes nonlinear phase-coupling. The performance of additional boundary conditions derived with limited or no infragravity observations are explored with the wave resolving, nonlinear model SWASH 1D. In some cases errors in the reduced boundary conditions (applied in 11 m depth) propagate shoreward, whereas in other cases errors are localized near the offshore boundary. Boundary conditions that can be implemented without infragravity observations (e.g. bound waves) do not accurately simulate infragravity waves across the surfzone, and could corrupt predictions of morphologic change. However, the bulk properties of infragravity waves in the inner surfzone and runup are predicted to be largely independent of ig offshore boundary conditions, and dominated by ig generation and dissipation.

2018
Fiedler, JW, Smit PB, Brodie KL, McNinch J, Guza RT.  2018.  Numerical modeling of wave runup on steep and mildly sloping natural beaches. Coastal Engineering. 131:106-113.   10.1016/j.coastaleng.2017.09.004   AbstractWebsite

Runup on ocean beaches includes steady wave setup and oscillating swash, often decomposed into wind generated sea-swell (SS), and lower frequency infragravity (IG) waves. We show that the numerically fast, open-source numerical model 1D SWASH predicts accurately the bulk properties of runup observed on two natural beaches (one steep and one shallow sloped) for a range of incident wave conditions. The runup tongue shape was measured with a scanning lidar, and the waterline location was defined in both the observations and model with a 10 cm depth threshold. Runup is reasonably accurately predicted with energetic (e.g. 5 m significant height) incident waves, even though the assumption of 1D bound waves significantly overpredicts infragravity energy at the offshore boundary in 10 in depth. The model-data comparisons are limited by statistical chatter, often larger in runup than offshore because runup energy is concentrated in the relatively narrow infragravity IG band with low effective degrees of freedom.