Export 14 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S [T] U V W X Y Z   [Show ALL]
Deeds, DA, Kulongoski JT, Mühle J, Weiss RF.  2015.  Tectonic activity as a significant source of crustal tetrafluoromethane emissions to the atmosphere: Observations in groundwaters along the San Andreas Fault. Earth and Planetary Science Letters. 412:163-172.   10.1016/j.epsl.2014.12.016   AbstractWebsite

Tetrafluoromethane (CF4) concentrations were measured in 14 groundwater samples from the Cuyama Valley, Mil Potrero and Cuddy Valley aquifers along the Big Bend section of the San Andreas Fault System (SAFS) in California to assess whether tectonic activity in this region is a significant source of crustal CF4 to the atmosphere. Dissolved CF4 concentrations in all groundwater samples but one were elevated with respect to estimated recharge concentrations including entrainment of excess air during recharge ( C r e ; ∼30 fmol kg−1 H2O), indicating subsurface addition of CF4 to these groundwaters. Groundwaters in the Cuyama Valley contain small CF4 excesses (0.1–9 times C r e ), which may be attributed to an in situ release from weathering and a minor addition of deep crustal CF4 introduced to the shallow groundwater through nearby faults. CF4 excesses in groundwaters within 200 m of the SAFS are larger (10–980 times C r e ) and indicate the presence of a deep crustal flux of CF4 that is likely associated with the physical alteration of silicate minerals in the shear zone of the SAFS. Extrapolating CF4 flux rates observed in this study to the full extent of the SAFS (1300 km × 20–100 km) suggests that the SAFS potentially emits ( 0.3 – 1 ) × 10 − 1 kg CF4 yr−1 to the Earth's surface. For comparison, the chemical weathering of ∼ 7.5 × 10 4 km 2 of granitic rock in California is estimated to release ( 0.019 – 3.2 ) × 10 − 1 kg CF4 yr−1. Tectonic activity is likely an important, and potentially the dominant, driver of natural emissions of CF4 to the atmosphere. Variations in preindustrial atmospheric CF4 as observed in paleo-archives such as ice cores may therefore represent changes in both continental weathering and tectonic activity, including changes driven by variations in continental ice cover during glacial–interglacial transitions.

Weiss, RF.  1981.  The temporal and spatial distribution of tropospheric nitrous oxide. Journal of Geophysical Research-Oceans and Atmospheres. 86:7185-7195.   10.1029/JC086iC08p07185   AbstractWebsite

The concentration of nitrous oxide has been measured in air samples collected between 1976 and 1980 at several monitoring stations and aboard Oceanographic vessels in the major world oceans. These measurements demonstrate that the tropospheric nitrous oxide concentration is increasing at ∼0.2% per year, thus confirming earlier observations of the increase based on stored samples. The measurements also show that the concentration of nitrous oxide in the northern hemisphere is higher than in the southern hemisphere, the average difference during the sampling interval having been about 0.8 parts per billion (ppb), compared to a January 1, 1978 northern hemisphere dry air mole fraction of 300.2 ppb. The data are well represented by a simple box model which relates the tropospheric rate of increase to an exponentially increasing source function. The observed increase may be explained by combustion of fossil fuels and agricultural activity, with a total source strength of ∼11 × 1010 mol/yr as of January 1, 1978. A substantial fraction of this production is explained by combustion, and agricultural production is therefore considerably less than has been previously estimated. The concentration of nitrous oxide in the preindustrial unperturbed troposphere is estimated to have been between 281 and 291 ppb, depending upon the rate of increase of the mean anthropogenic source function, and the preindustrial latitudinal distribution is estimated to have been nearly uniform. According to the model projections, the concentration of tropospheric nitrous oxide in the year 2000 will be 5 to 7% above present values. The observed rate of tropospheric increase directly affects the production of stratospheric nitric oxide, and plays a significant role in the earth's radiation balance, conservatively estimated as 10–15% of the effect due to increasing carbon dioxide.

Deeds, DA, Muhle J, Weiss RF.  2008.  Tetrafluoromethane in the deep North Pacific Ocean. Geophysical Research Letters. 35   10.1029/2008gl034355   AbstractWebsite

Dissolved tetrafluoromethane (CF(4)) has been measured for the first time in the North Pacific Ocean. Surface water collected during calm weather is near equilibrium with the modern atmosphere. Deep water, isolated from atmospheric exchange for centuries, is near equilibrium with the preindustrial atmosphere, after accounting for an expected 5% addition of this low-solubility gas due to air injection during high-latitude deep-water formation. These results strongly suggest that dissolved CF(4) is conservative in seawater and that the oceanic imprint of anthropogenic increases in atmospheric CF(4) can be used as a time-dependent tracer of ocean ventilation and subsurface circulation processes. Although the continental lithosphere is a source of natural atmospheric CF(4), we find no evidence of an oceanic lithospheric CF(4) input into deep Pacific waters. The estimated upper limit of a potential oceanic lithospheric CF(4) flux to the global atmosphere is on the order of 4% of that from the continental lithosphere.

Gordon, AL, Weiss RF, Smethie WM, Warner MJ.  1992.  Thermocline and intermediate water communication between the south Atlantic and Indian oceans. Journal of Geophysical Research-Oceans. 97:7223-7240.   10.1029/92jc00485   AbstractWebsite

A conductivity-temperature-depth and tracer chemistry section in the southeast South Atlantic in December 1989 and January 1990 presents strong evidence that there is a significant interocean exchange of thermocline and intermediate water between the South Atlantic and Indian oceans. Eastward flowing water at 10-degrees-W composed of South Atlantic Central (thermocline) Water is too enriched with chlorofluoromethanes 11 and 12 and oxygen to be the sole source of similar theta-S water within the northward flowing Benguela Current. About two thirds of the Benguela Current thermocline transport is drawn from the Indian Ocean; the rest is South Atlantic water that has folded into the Benguela Current in association with the Agulhas eddy-shedding process. South Atlantic Central water passes in the Indian Ocean by a route to the south of the Agulhas Return Current. The South Atlantic water loops back to the Atlantic within the Indian Ocean, perhaps mostly within the Agulhas recirculation cell of the southwest Indian Ocean. Linkage of Atlantic and Indian Ocean water diminishes with increasing depth; it extends through the lower thermocline into the Antarctic Intermediate Water (AAIW) (about 50% is derived from the Indian Ocean) but not into the deep water. While much of the interocean exchange remains on an approximate horizontal "isopycnal" plane, as much as 10 x 10(6) m3 s-1 of Indian Ocean water within the 25 x 10(6) m3 s-1 Benguela Current, mostly derived from the lower thermocline and AAIW, may balance deeper Atlantic export of North Atlantic Deep Water (NADW). The addition of salt water from the evaporative Indian Ocean into the South Atlantic Ocean thermocline and AAIW levels may precondition the Atlantic for NADW formation. While AAIW seems to be the chief feed for NADW, the bulk of it enters the subtropical South Atlantic, spiked with Indian Ocean salt, within the Benguela Current rather than along the western boundary of the South Atlantic.

Kirschke, S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque JF, Langenfelds RL, Le Quere C, Naik V, O'Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G.  2013.  Three decades of global methane sources and sinks. Nature Geoscience. 6:813-823.   10.1038/ngeo1955   AbstractWebsite

Methane is an important greenhouse gas, responsible for about 20% of the warming induced by long-lived greenhouse gases since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative contributions to atmospheric methane levels are highly uncertain. As such, the factors responsible for the observed stabilization of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions. The resultant budgets suggest that data-driven approaches and ecosystem models overestimate total natural emissions. We build three contrasting emission scenarios - which differ in fossil fuel and microbial emissions - to explain the decadal variability in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties in emission trends do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and 2006 can potentially be explained by decreasing-to-stable fossil fuel emissions, combined with stable-to-increasing microbial emissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed increase in global methane levels after 2006, although the relative contribution of these two sources remains uncertain.

Wells, KC, Millet DB, Bousserez N, Henze DK, Griffis TJ, Chaliyakunnel S, Dlugokencky EJ, Saikawa E, Xiang G, Prinn RG, O'Doherty S, Young D, Weiss RF, Dutton GS, Elkins JW, Krummel PB, Langenfelds R, Steele LP.  2018.  Top-down constraints on global N2O emissions at optimal resolution: application of a new dimension reduction technique. Atmospheric Chemistry and Physics. 18:735-756.   10.5194/acp-18-735-2018   AbstractWebsite

We present top-down constraints on global monthly N2O emissions for 2011 from a multi-inversion approach and an ensemble of surface observations. The inversions employ the GEOS-Chem adjoint and an array of aggregation strategies to test how well current observations can constrain the spatial distribution of global N2O emissions. The strategies include (1) a standard 4D-Var inversion at native model resolution (4 degrees x 5 degrees), (2) an inversion for six continental and three ocean regions, and (3) a fast 4D-Var inversion based on a novel dimension reduction technique employing randomized singular value decomposition (SVD). The optimized global flux ranges from 15.9 TgNyr(-1) (SVD-based inversion) to 17.5-17.7 TgNyr(-1) (continental-scale, standard 4D-Var inversions), with the former better capturing the extratropical N2O background measured during the HIAPER Pole-to-Pole Observations (HIPPO) airborne campaigns. We find that the tropics provide a greater contribution to the global N2O flux than is predicted by the prior bottom-up inventories, likely due to underestimated agricultural and oceanic emissions. We infer an overestimate of natural soil emissions in the extratropics and find that predicted emissions are seasonally biased in northern midlatitudes. Here, optimized fluxes exhibit a springtime peak consistent with the timing of spring fertilizer and manure application, soil thawing, and elevated soil moisture. Finally, the inversions reveal a major emission underestimate in the US Corn Belt in the bottom-up inventory used here. We extensively test the impact of initial conditions on the analysis and recommend formally optimizing the initial N2O distribution to avoid biasing the inferred fluxes. We find that the SVD-based approach provides a powerful framework for deriving emission information from N2O observations: by defining the optimal resolution of the solution based on the information content of the inversion, it provides spatial information that is lost when aggregating to political or geographic regions, while also providing more temporal information than a standard 4D-Var inversion.

Nisbet, E, Weiss R.  2010.  Top-down versus bottom-up. Science. 328:1241-1243.   10.1126/science.1189936   AbstractWebsite

Greenhouse gas emissions are currently quantified from statistical data without testing the results against the actual increases of these gases in the atmosphere. This is like dieting without weighing oneself. Data are produced by greenhouse gas emitters of all sizes, from factory or farm to nation, and are quoted to high precision—yet misreporting occurs, whether by simple error, ignorance, or intention. But now scientists on both sides of the Atlantic are arguing that regulation of greenhouse gas emissions can have integrity only if verified by direct atmospheric measurements.

Kroopnic.P, Weiss RF, Craig H.  1972.  Total CO2,13C, and dissolved oxygen -18O at GEOSECS II in the North Atlantic. Earth and Planetary Science Letters. 16:103-110.   10.1016/0012-821x(72)90242-7   AbstractWebsite

This paper presents profiles of ΣCO2, δ13C in ΣCO2, dissolved O2, and δ18O in dissolved O2, measured at Geosecs II in the North Atlantic. The O2 minimum at 1000 m is accompanied by a minimum in δ13C and a sharp maximum in δ18O; ΣCO2 increases downward through this layer with a slope change. All four parameters are remarkably uniform in the deep and bottom water below the O2 minimum, almost to the precision of measurement. Relative to data previously reported from this area of the Atlantic, our ΣCO2 values are 3% lower than those of Li et al. [10], and our δ13C values are up to 2‰ greater than those of Deuser and Hunt [12]. Also, our δ18O enrichments in dissolved O2 are very much less than Pacific values reported by Dole and coworkers [15]. All of these differences are attributed principally to bacterial O2 consumption during sample storage by previous workers, due to lack of, or inadequate, poisoning.In contrast to the North Atlantic, there is a very large gradient of dissolved O2 in the vertical profile of North Pacific Deep Water; however, if themean deep-water O2 concentration is compared with the uniform value in North Atlantic Deep Water, the O2 and ΣCO2 differences in North Atlantic and North Pacific Deep Water are essentially equimolar at 160 μm/kg. If 77% of deep-water O2 consumption is used for oxidation of organic carbon (the R-K-R “model plankton” value), the increase in ΣCO2 in Pacific deep water is about 25% due to dissolution of carbonate, and 75% due to oxidation of organic matter, in the vertical particulate flux. These proportions are in agreement with those estimated from alkalinity-ΣCO2 variations [10]. Our δ13C measurements in the Atlantic are quite consistent with the ΣCO2-O2-alkalinity variations between the Atlantic and Pacific deep water; thus the disagreement previously noted [14] is attributed to storage effects on δ13C measurements by previous workers, as noted above.

Park, S, Li S, Mühle J, O'Doherty S, Weiss RF, Fang X, Reimann S, Prinn RG.  2018.  Toward resolving the budget discrepancy of ozone-depleting carbon tetrachloride (CCl4): an analysis of top-down emissions from China. Atmos. Chem. Phys.. 18:11729-11738.: Copernicus Publications   10.5194/acp-18-11729-2018   Abstract

Carbon tetrachloride (CCl4) is a first-generation ozone-depleting substance, and its emissive use and production were globally banned by the Montreal Protocol with a 2010 phase-out; however, production and consumption for non-dispersive use as a chemical feedstock and as a process agent are still allowed. This study uses the high frequency and magnitude of CCl4 pollution events from an 8-year real-time atmospheric measurement record obtained at Gosan station (a regional background monitoring site in East Asia) to present evidence of significant unreported emissions of CCl4. Top-down emissions of CCl4 amounting to 23.6±7.1Gg yr−1 from 2011 to 2015 are estimated for China, in contrast to the most recently reported, post-2010, Chinese bottom-up emissions of 4.3–5.2Ggyr−1. The missing emissions ( ∼ 19Ggyr−1) for China contribute to approximately 54% of global CCl4 emissions. It is also shown that 89 % ± 6% of CCl4 enhancements observed at Gosan are related to CCl4 emissions from the production of CH3Cl, CH2Cl2, CHCl3 and C2Cl4 and its usage as a feedstock and process agent in chemical manufacturing industries. Specific sources and processes are identified using statistical methods, and it is considered highly unlikely that CCl4 is emitted by dispersive uses such as old landfills, contaminated soils and solvent usage. It is thus crucial to implement technical improvements and better regulation strategies to reduce evaporative losses of CCl4 occurring at the factory and/or process levels.

Muhle, J, Lueker TJ, Su Y, Miller BR, Prather KA, Weiss RF.  2007.  Trace gas and particulate emissions from the 2003 southern California wildfires. Journal of Geophysical Research-Atmospheres. 112   10.1029/2006jd007350   AbstractWebsite

In October 2003, thirteen major wildfires in southern California burned more than 300,000 hectares of mainly chaparral biome. High-precision in situ trace gas and particle measurements of the wildfire plumes in La Jolla, California, showed a high degree of correlation among carbon dioxide (CO(2)), methane (CH(4)), nonmethane hydrocarbons, and methyl halide mixing ratios, as well as with particle number concentrations (10-300 nm and 500-2500 nm aerodynamic diameter). Aerosol time-of-flight mass spectrometry of individual aerosol particles (50-2500 nm range) showed that 70-85% had typical biomass burning signatures (levoglucosan coupled with potassium). Only 5-18% of particles in the 50 - 300 nm range had vehicle signatures. Molar trace gas enhancement ratios (ERs) versus ethane and CO(2) were calculated and showed a narrow age distribution, consistent with the short distance from the wildfires. ERs for N(2)O and CH(3)CCl(3) versus CO(2) were determined, but correlations were poor. No significant CH(2)Cl(2) or CHCl(3) emissions were detected. CO2 emissions from the nearby Cedar fire were estimated both with a simple Lagrangian atmospheric transport model and a burned area approach and extrapolated to 11 Tg CO(2) for the total burned area in southern California. Total CO(2), CH(4), C(2)-hydrocarbons, benzene, toluene, methyl chloride, methyl iodide, and PM(2.5) emissions were similar to 0.2-3.5% of yearly global extratropical forest fire emissions and more than 28% of CH(4), C(6)H(6), and PM(2.5) 2003 San Diego and South Coast Air Basins anthropogenic emissions. Particle distributions and single particle chemistry are discussed. PM(2.5) considerably exceeded the EPA short-term exposure limit.

Thompson, RL, Patra PK, Ishijima K, Saikawa E, Corazza M, Karstens U, Wilson C, Bergamaschi P, Dlugokencky E, Sweeney C, Prinn RG, Weiss RF, O'Doherty S, Fraser PJ, Steele LP, Krummel PB, Saunois M, Chipperfield M, Bousquet P.  2014.  TransCom N2O model inter-comparison - Part 1: Assessing the influence of transport and surface fluxes on tropospheric N2O variability. Atmospheric Chemistry and Physics. 14:4349-4368.   10.5194/acp-14-4349-2014   AbstractWebsite

We present a comparison of chemistry-transport models (TransCom-N2O) to examine the importance of atmospheric transport and surface fluxes on the variability of N2O mixing ratios in the troposphere. Six different models and two model variants participated in the inter-comparison and simulations were made for the period 2006 to 2009. In addition to N2O, simulations of CFC-12 and SF6 were made by a subset of four of the models to provide information on the models' proficiency in stratosphere-troposphere exchange (STE) and meridional transport, respectively. The same prior emissions were used by all models to restrict differences among models to transport and chemistry alone. Four different N2O flux scenarios totalling between 14 and 17 TgN yr(-1) (for 2005) globally were also compared. The modelled N2O mixing ratios were assessed against observations from in situ stations, discrete air sampling networks and aircraft. All models adequately captured the large-scale patterns of N2O and the vertical gradient from the troposphere to the stratosphere and most models also adequately captured the N2O tropospheric growth rate. However, all models underestimated the inter-hemispheric N2O gradient by at least 0.33 parts per billion (ppb), equivalent to 1.5 TgN, which, even after accounting for an overestimate of emissions in the Southern Ocean of circa 1.0 TgN, points to a likely underestimate of the Northern Hemisphere source by up to 0.5 TgN and/or an overestimate of STE in the Northern Hemisphere. Comparison with aircraft data reveal that the models over-estimate the amplitude of the N2O seasonal cycle at Hawaii (21 degrees N, 158 degrees W) below circa 6000 m, suggesting an overestimate of the importance of stratosphere to troposphere transport in the lower troposphere at this latitude. In the Northern Hemisphere, most of the models that provided CFC-12 simulations captured the phase of the CFC-12, seasonal cycle, indicating a reasonable representation of the timing of STE. However, for N2O all models simulated a too early minimum by 2 to 3 months owing to errors in the seasonal cycle in the prior soil emissions, which was not adequately represented by the terrestrial biosphere model. In the Southern Hemisphere, most models failed to capture the N2O and CFC-12 seasonality at Cape Grim, Tasmania, and all failed at the South Pole, whereas for SF6, all models could capture the seasonality at all sites, suggesting that there are large errors in modelled vertical transport in high southern latitudes.

Thompson, RL, Ishijima K, Saikawa E, Corazza M, Karstens U, Patra PK, Bergamaschi P, Chevallier F, Dlugokencky E, Prinn RG, Weiss RF, O'Doherty S, Fraser PJ, Steele LP, Krummel PB, Vermeulen A, Tohjima Y, Jordan A, Haszpra L, Steinbacher M, Van der Laan S, Aalto T, Meinhardt F, Popa ME, Moncrieff J, Bousquet P.  2014.  TransCom N2O model inter-comparison - Part 2: Atmospheric inversion estimates of N2O emissions. Atmospheric Chemistry and Physics. 14:6177-6194.   10.5194/acp-14-6177-2014   AbstractWebsite

This study examines N2O emission estimates from five different atmospheric inversion frameworks based on chemistry transport models (CTMs). The five frameworks differ in the choice of CTM, meteorological data, prior uncertainties and inversion method but use the same prior emissions and observation data set. The posterior modelled atmospheric N2O mole fractions are compared to observations to assess the performance of the inversions and to help diagnose problems in the modelled transport. Additionally, the mean emissions for 2006 to 2008 are compared in terms of the spatial distribution and seasonality. Overall, there is a good agreement among the inversions for the mean global total emission, which ranges from 16.1 to 18.7 TgN yr(-1) and is consistent with previous estimates. Ocean emissions represent between 31 and 38% of the global total compared to widely varying previous estimates of 24 to 38%. Emissions from the northern mid- to high latitudes are likely to be more important, with a consistent shift in emissions from the tropics and subtropics to the mid- to high latitudes in the Northern Hemisphere; the emission ratio for 0-30A degrees N to 30-90A degrees N ranges from 1.5 to 1.9 compared with 2.9 to 3.0 in previous estimates. The largest discrepancies across inversions are seen for the regions of South and East Asia and for tropical and South America owing to the poor observational constraint for these areas and to considerable differences in the modelled transport, especially inter-hemispheric exchange rates and tropical convective mixing. Estimates of the seasonal cycle in N2O emissions are also sensitive to errors in modelled stratosphere-to-troposphere transport in the tropics and southern extratropics. Overall, the results show a convergence in the global and regional emissions compared to previous independent studies.

Weiss, RF.  1991.  Transient tracers in the ocean, tropical Atlantic study: chlorofluorocarbon measurements. Scripps Institution of Oceanography Reference Series. :159., San Diego; La Jolla: University of California ; Scripps Institution of Oceanography Abstract
Waugh, DW, Vollmer MK, Weiss RF, Haine TWN, Hall TM.  2002.  Transit time distributions in Lake Issyk-Kul. Geophysical Research Letters. 29   10.1029/2002gl016201   AbstractWebsite

[1] Measurements of sulfur hexafluoride (SF6)and chlorofluorocarbons (CFCs) are used to constrain the timescales for deep-water renewal in Lake Issyk-Kul. As these tracers have different tropospheric histories their combination provides more transport information than one tracer alone. In particular, from these measurements the mean, Gamma, and standard deviation, sigma, of the distributions of transit times since water made last contact with the surface can be tightly constrained. Gamma is older than the age determined from SF6 and younger than the ages from the CFCs, and increases from around 4 yrs at 200 m to around 10.5 yrs at the deepest location (655 m). sigma also increases with depth and equals around 0.7 to 0.8 Gamma, which corresponds to large ranges of transit times, and implies mixing processes play a major role in the transport. The approach used can also be applied to similar tracer measurements in the oceans and groundwaters to constrain transport in these geophysical systems.