Publications

Export 10 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N [O] P Q R S T U V W X Y Z   [Show ALL]
B
Bender, M, Jahnke R, Weiss R, Martin W, Heggie DT, Orchardo J, Sowers T.  1989.  Organic carbon oxidation and benthic nitrogen and silica dynamics in San Clemente Basin, a continental borderland site. Geochimica Et Cosmochimica Acta. 53:685-697.   10.1016/0016-7037(89)90011-2   AbstractWebsite

Organic carbon oxidation rates in San Clemente Basin were determined by benthic chamber experiments using the Bottom Lander, along with studies of pore water chemistry. Non-steady-state diagenetic models are developed for interpreting concentration-time data from the benthic chamber experiments. O2, NO3−, and SO42− are all important oxidants for organic carbon at our study site. Regenerated fixed nitrogen was consumed by NO3− reduction. There is a flux of NO3− into the sediments, and the benthic flux of NH4+ is undetectable. The total rate at which fixed nitrogen is removed from the oceans at this site is about twice the flux of PON to the sea floor. SiO2 fluxes calculated from interfacial pore water gradients are in satisfactory agreement with those determined using the Lander. Most silica dissolution must therefore occur within the sediments, although interstitial profiles show that little dissolution occurs below 1 cm depth.

G
Greally, BR, Manning AJ, Reimann S, McCulloch A, Huang J, Dunse BL, Simmonds PG, Prinn RG, Fraser PJ, Cunnold DM, O'Doherty S, Porter LW, Stemmler K, Vollmer MK, Lunder CR, Schmidbauer N, Hermansen O, Arduini J, Salameh PK, Krummel PB, Wang RHJ, Folini D, Weiss RF, Maione M, Nickless G, Stordal F, Derwent RG.  2007.  Observations of 1,1-difluoroethane (HFC-152a) at AGAGE and SOGE monitoring stations in 1994-2004 and derived global and regional emission estimates. Journal of Geophysical Research-Atmospheres. 112   10.1029/2006jd007527   AbstractWebsite

[1] Ground-based in situ measurements of 1,1-difluoroethane (HFC-152a, CH3CHF2) which is regulated under the Kyoto Protocol are reported under the auspices of the AGAGE (Advanced Global Atmospheric Gases Experiment) and SOGE (System of Observation of halogenated Greenhouse gases in Europe) programs. Observations of HFC-152a at five locations (four European and one Australian) over a 10 year period were recorded. The annual average growth rate of HFC-152a in the midlatitude Northern Hemisphere has risen from 0.11 ppt/yr to 0.6 ppt/yr from 1994 to 2004. The Southern Hemisphere annual average growth rate has risen from 0.09 ppt/yr to 0.4 ppt/yr from 1998 to 2004. The 2004 average mixing ratio for HFC-152a was 5.0 ppt and 1.8 ppt in the Northern and Southern hemispheres, respectively. The annual cycle observed for this species in both hemispheres is approximately consistent with measured annual cycles at the same locations in other gases which are destroyed by OH. Yearly global emissions of HFC-152a from 1994 to 2004 are derived using the global mean HFC-152a observations and a 12-box 2-D model. The global emission of HFC-152a has risen from 7 Kt/yr to 28 Kt/yr from 1995 to 2004. On the basis of observations of above-baseline elevations in the HFC-152a record and a consumption model, regional emission estimates for Europe and Australia are calculated, indicating accelerating emissions from Europe since 2000. The overall European emission in 2004 ranges from 1.5 to 4.0 Kt/year, 5-15% of global emissions for 1,1-difluoroethane, while the Australian contribution is negligible at 5-10 tonnes/year, < 0.05% of global emissions.

J
Jacobs, SS, Weiss RF.  1998.  Ocean, ice, and atmosphere : interactions at the Antarctic continental margin. Antarctic Research Series. :380., Washington, D.C.: American Geophysical Union Abstract
n/a
K
Keir, RS, Michel RL, Weiss RF.  1992.  Ocean mixing versus gas-exchange in Antarctic Shelf Waters near 150°E. Deep-Sea Research Part a-Oceanographic Research Papers. 39:97-119. AbstractWebsite

In February 1985, chlorofluoromethanes (CFMs), tritium and radiocarbon were measured in Antarctic continental shelf waters near 150-degrees-E. These distributions are used to evaluate (1) the transport of Warm Deep Water (WDW) and Antarctic Surface Water onto the shelf, and (2) the gas exchange rates across the sea surface. The time varying response of these tracers to atmospheric forcing is simulated with a box model of the water masses in this region. In the model, horizontal mixing of surface waters strongly affects the shelf radiocarbon level, but the CFMs and tritium are not affected. The observed low tritium concentrations (< 0.2 TU) in the shelf waters provide a lower limit to the transport of tritium deficient Warm Deep Water into the region, which is equivalent to a vertical flux of about 75 m y-1. This implies a maximum residence time of WDW in the basin of about 8 years. The transport of subsurface water out of the basin at the shelf break is estimated to be approximately 0.2 to 0.4 x 10(6) m3 s-1. The average annual CFM piston velocity for gas exchange is estimated to be about 200 m y-1.

Kim, J, Li S, Muhle J, Stohl A, Kim SK, Park S, Park MK, Weiss RF, Kim KR.  2012.  Overview of the findings from measurements of halogenated compounds at Gosan (Jeju Island, Korea) quantifying emissions in East Asia. Journal of Integrative Environmental Sciences. 9:71-80.   10.1080/1943815x.2012.696548   AbstractWebsite

With increased economic growth in East Asia, regional emissions of many anthropogenic halogenated compounds now constitute a substantial fraction of the global totals. Here, we summarize recently reported findings from measurements of a wide range of chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and other halogenated compounds at Gosan (Jeju Island, Korea) within the advanced global atmospheric gases experiment (AGAGE). General wind patterns at Gosan bring air masses from the surrounding areas, allowing the monitoring of both clean baseline and polluted air masses. We have analyzed our measurements since November 2007 both with an interspecies correlation method and with an inversion method based on the FLEXPART Lagrangian particle dispersion model to estimate these regional emissions. The results show that emissions of halogenated compounds in East Asia account for over 20% of global emissions, both in terms of ozone depletion potential (ODP) and global warming potential (GWP), and emphasize the importance of atmospheric measurements for quantifying emissions of these compounds in this region.

P
Patra, PK, Krol MC, Montzka SA, Arnold T, Atlas EL, Lintner BR, Stephens BB, Xiang B, Elkins JW, Fraser PJ, Ghosh A, Hintsa EJ, Hurst DF, Ishijima K, Krummel PB, Miller BR, Miyazaki K, Moore FL, Muhle J, O'Doherty S, Prinn RG, Steele LP, Takigawa M, Wang HJ, Weiss RF, Wofsy SC, Young D.  2014.  Observational evidence for interhemispheric hydroxyl-radical parity. Nature. 513:219-+.   10.1038/nature13721   AbstractWebsite

The hydroxyl radical (OH) is a key oxidant involved in the removal of air pollutants and greenhouse gases from the atmosphere(1-3). The ratio of Northern Hemispheric to Southern Hemispheric (NH/SH) OH concentration is important for our understanding of emission estimates of atmospheric species such as nitrogen oxides and methane(4-6). It remains poorly constrained, however, with a range of estimates from 0.85 to 1.4 (refs 4,7-10). Here we determine the NH/SH ratio of OH with the help of methyl chloroform data (a proxy for OH concentrations) and an atmospheric transport model that accurately describes interhemispheric transport and modelled emissions. We find that for the years 2004-2011 the model predicts an annual mean NH-SH gradient of methyl chloroform that is a tight linear function of the modelled NH/SH ratio in annual mean OH. We estimate a NH/SH OH ratio of 0.97 +/- 0.12 during this time period by optimizing global total emissions and mean OH abundance to fit methyl chloroform data from two surface-measurement networks and aircraft campaigns(11-13). Our findings suggest that top-down emission estimates of reactive species such as nitrogen oxides in key emitting countries in the NH that are based on a NH/SH OH ratio larger than 1 may be overestimated.

R
Reimann, S, Elkins JW, Fraser PJ, Hall BD, Kurylo MJ, Mahieu E, Montzka SA, Prinn RG, Rigby M, Simmonds PG, Weiss RF.  2018.  Observing the atmospheric evolution of ozone-depleting substances. Comptes Rendus Geoscience. 350:384-392.   10.1016/j.crte.2018.08.008   AbstractWebsite

The atmospheric observations of ozone-depleting substances (ODSs) have been essential for following their atmospheric response to the production and use restrictions imposed by the Montreal Protocol and its Amendments and Adjustments. ODSs have been used since the first half of the 20th century in industrial and domestic applications. However, their atmospheric growth went unnoticed until the early 1970s, when they were discovered using gas chromatograph-electron capture detection (GC-ECD) instruments. Similar instrumentation formed the basis of global flask and in situ measurements commenced by NOAA and ALE/GAGE/AGAGE in the late 1970s. The combination of these networks, supported by a number of other laboratories, has been essential for following the tropospheric trends of ODSs. Additionally, ground-based remote sensing measurements within NDACC and aircraft-based observation programs have been crucial for measuring the evolution of the ODS abundances over the entire atmosphere. Maintaining these networks at least at their current state is vital for ensuring the on-going verification of the success of the Montreal Protocol. (C) 2018 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

W
Whitworth, T, Nowlin WD, Pillsbury RD, Moore MI, Weiss RF.  1991.  Observations of the Antarctic Circumpolar Current and deep boundary current in the southwest Atlantic. Journal of Geophysical Research-Oceans. 96:15105-15118.   10.1029/91jc01319   AbstractWebsite

Fourteen-month velocity and temperature records from an array of 14 moorings north and west of the Falkland Plateau and supporting hydrographic and tracer data reveal a narrow boundary current that carries dense Antarctic waters. The current flows west along the northern flank of the Falkland Plateau with mean speeds of more than 10 cm s-1 at 5000 m and more than 30 cm s-1 at 2500 m. The westward flow extends from the bottom to at least 1000 m, but the upper portion of the current is a branch of the Antarctic Circumpolar Current (ACC) following the only deepwater route between the Scotia Sea and the Argentine Basin. Waters colder than 0.2-degrees-C are too cold to be associated with the ACC at Drake Passage and must ultimately derive from the Weddell Sea as part of the deep thermohaline circulation. The westward transport of water colder than 0.2-degrees-C is 8.2 x 10(6) m3 s-1. In the mean the bottom boundary current is similar to that predicted by the Stommel-Arons model, but considerable variability is introduced by the meandering of the overlying ACC. Chlorofluorocarbon data suggest that new Antarctic water from the Georgia Basin enters the Argentine Basin via the deep boundary current, which passes beneath the ACC; some new water is also advected east after being entrained in the ACC. Most of the water in the deep boundary current is recirculated water that has been in residence in the Argentine Basin for some time. Water colder than -0.2-degrees-C is relatively new to the basin and comprises about 2.5 x 10(6) m3 s-1 of the westward flow of the boundary current.

X
Xiao, X, Prinn RG, Fraser PJ, Simmonds PG, Weiss RF, O'Doherty S, Miller BR, Salameh PK, Harth CM, Krummel PB, Porter LW, Muhle J, Greally BR, Cunnold D, Wang R, Montzka SA, Elkins JW, Dutton GS, Thompson TM, Butler JH, Hall BD, Reimann S, Vollmer MK, Stordal F, Lunder C, Maione M, Arduini J, Yokouchi Y.  2010.  Optimal estimation of the surface fluxes of methyl chloride using a 3-D global chemical transport model. Atmospheric Chemistry and Physics. 10:5515-5533.   10.5194/acp-10-5515-2010   AbstractWebsite

Methyl chloride (CH(3)Cl) is a chlorine-containing trace gas in the atmosphere contributing significantly to stratospheric ozone depletion. Large uncertainties in estimates of its source and sink magnitudes and temporal and spatial variations currently exist. GEIA inventories and other bottom-up emission estimates are used to construct a priori maps of the surface fluxes of CH(3)Cl. The Model of Atmospheric Transport and Chemistry (MATCH), driven by NCEP interannually varying meteorological data, is then used to simulate CH(3)Cl mole fractions and quantify the time series of sensitivities of the mole fractions at each measurement site to the surface fluxes of various regional and global sources and sinks. We then implement the Kalman filter (with the unit pulse response method) to estimate the surface fluxes on regional/global scales with monthly resolution from January 2000 to December 2004. High frequency observations from the AGAGE, SOGE, NIES, and NOAA/ESRL HATS in situ networks and low frequency observations from the NOAA/ESRL HATS flask network are used to constrain the source and sink magnitudes. The inversion results indicate global total emissions around 4100 +/- 470 Ggyr(-1) with very large emissions of 2200 +/- 390 Gg yr(-1) from tropical plants, which turn out to be the largest single source in the CH(3)Cl budget. Relative to their a priori annual estimates, the inversion increases global annual fungal and tropical emissions, and reduces the global oceanic source. The inversion implies greater seasonal and interannual oscillations of the natural sources and sink of CH(3)Cl compared to the a priori. The inversion also reflects the strong effects of the 2002/2003 globally widespread heat waves and droughts on global emissions from tropical plants, biomass burning and salt marshes, and on the soil sink.

Xiao, X, Prinn RG, Simmonds PG, Steele LP, Novelli PC, Huang J, Langenfelds RL, O'Doherty S, Krummel PB, Fraser PJ, Porter LW, Weiss RF, Salameh P, Wang RHJ.  2007.  Optimal estimation of the soil uptake rate of molecular hydrogen from the Advanced Global Atmospheric Gases Experiment and other measurements. Journal of Geophysical Research-Atmospheres. 112   10.1029/2006jd007241   AbstractWebsite

[1] Hydrogen (H(2)), a proposed clean energy alternative, warrants detailed investigation of its global budget and future environmental impacts. The magnitudes and seasonal cycles of the major ( presumably microbial) soil sink of hydrogen have been estimated from high-frequency in situ AGAGE H(2) observations and also from more geographically extensive but low-frequency flask measurements from CSIRO and NOAA-GMD using the Kalman filter in a two-dimensional (2-D) global transport model. Hydrogen mole fractions exhibit well-defined seasonal cycles in each hemisphere with their phase difference being only about 3 months. The global production rate of H(2) is estimated to be 103 +/- 10 Tg yr(-1) with only a small estimated interannual variation. Soil uptake ( 84 +/- 8 Tg yr(-1)) represents the major loss process for H(2) and accounts for 81% of the total destruction. Strong seasonal cycles are deduced for the soil uptake of H(2). The soil sink is a maximum over the northern extratropics in summer and peaks only 2 to 3 months earlier in the Northern Hemisphere than in the Southern Hemisphere. Oxidation by tropospheric OH (18 +/- 3 Tg yr(-1)) accounts for 17% of the destruction, with the remainder due to destruction in the stratosphere. The calculated global burden is 191 +/- 29 Tg, indicating an overall atmospheric lifetime of 1.8 +/- 0.3 years. Hydrogen in the troposphere ( 149 +/- 23 Tg burden) has a lifetime of 1.4 +/- 0.2 years.