Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Simmonds, PG, Rigby M, Manning AJ, Lunt MF, O'Doherty S, McCulloch A, Fraser PJ, Henne S, Vollmer MK, Muhle J, Weiss RF, Salameh PK, Young D, Reimann S, Wenger A, Arnold T, Harth CM, Krummel PB, Steele LP, Dunse BL, Miller BR, Lunder CR, Hermansen O, Schmidbauer N, Saito T, Yokouchi Y, Park S, Li S, Yao B, Zhou LX, Arduini J, Maione M, Wang RHJ, Ivy D, Prinn RG.  2016.  Global and regional emissions estimates of 1,1-difluoroethane (HFC-152a, CH3CHF2) from in situ and air archive observations. Atmospheric Chemistry and Physics. 16:365-382.   10.5194/acp-16-365-2016   AbstractWebsite

High frequency, in situ observations from 11 globally distributed sites for the period 1994-2014 and archived air measurements dating from 1978 onward have been used to determine the global growth rate of 1,1-difluoroethane (HFC-152a, CH3CHF2). These observations have been combined with a range of atmospheric transport models to derive global emission estimates in a top-down approach. HFC-152a is a greenhouse gas with a short atmospheric lifetime of about 1.5 years. Since it does not contain chlorine or bromine, HFC-152a makes no direct contribution to the destruction of stratospheric ozone and is therefore used as a substitute for the ozone de- pleting chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). The concentration of HFC-152a has grown substantially since the first direct measurements in 1994, reaching a maximum annual global growth rate of 0.84 +/- 0.05 ppt yr(-1) in 2006, implying a substantial increase in emissions up to 2006. However, since 2007, the annual rate of growth has slowed to 0.38 +/- 0.04 ppt yr(-1) in 2010 with a further decline to an annual average rate of growth in 2013-2014 of -0.06 +/- 0.05 ppt yr(-1). The annual average Northern Hemisphere (NH) mole fraction in 1994 was 1.2 ppt rising to an annual average mole fraction of 10.1 ppt in 2014. Average annual mole fractions in the Southern Hemisphere (SH) in 1998 and 2014 were 0.84 and 4.5 ppt, respectively. We estimate global emissions of HFC-152a have risen from 7.3 +/- 5.6 Gg yr(-1) in 1994 to a maximum of 54.4 +/- 17.1 Gg yr(-1) in 2011, declining to 52.5 +/- 20.1 Gg yr(-1) in 2014 or 7.2 +/- 2.8 Tg-CO2 eq yr(-1). Analysis of mole fraction enhancements above regional background atmospheric levels suggests substantial emissions from North America, Asia, and Europe. Global HFC emissions (so called "bottom up" emissions) reported by the United Nations Framework Convention on Climate Change (UNFCCC) are based on cumulative national emission data reported to the UNFCCC, which in turn are based on national consumption data. There appears to be a significant underestimate (> 20 Gg) of "bottom-up" reported emissions of HFC-152a, possibly arising from largely underestimated USA emissions and undeclared Asian emissions.

Rigby, M, Prinn RG, O'Doherty S, Miller BR, Ivy D, Muhle J, Harth CM, Salameh PK, Arnold T, Weiss RF, Krummel PB, Steele LP, Fraser PJ, Young D, Simmonds PG.  2014.  Recent and future trends in synthetic greenhouse gas radiative forcing. Geophysical Research Letters. 41:2623-2630.   10.1002/2013gl059099   AbstractWebsite

Atmospheric measurements show that emissions of hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons are now the primary drivers of the positive growth in synthetic greenhouse gas (SGHG) radiative forcing. We infer recent SGHG emissions and examine the impact of future emissions scenarios, with a particular focus on proposals to reduce HFC use under the Montreal Protocol. If these proposals are implemented, overall SGHG radiative forcing could peak at around 355mWm(-2) in 2020, before declining by approximately 26% by 2050, despite continued growth of fully fluorinated greenhouse gas emissions. Compared to no HFC policy projections, this amounts to a reduction in radiative forcing of between 50 and 240mWm(-2) by 2050 or a cumulative emissions saving equivalent to 0.5 to 2.8years of CO2 emissions at current levels. However, more complete reporting of global HFC emissions is required, as less than half of global emissions are currently accounted for.

Stohl, A, Seibert P, Arduini J, Eckhardt S, Fraser P, Greally BR, Lunder C, Maione M, Muhle J, O'Doherty S, Prinn RG, Reimann S, Saito T, Schmidbauer N, Simmonds PG, Vollmer MK, Weiss RF, Yokouchi Y.  2009.  An analytical inversion method for determining regional and global emissions of greenhouse gases: Sensitivity studies and application to halocarbons. Atmospheric Chemistry and Physics. 9:1597-1620.   10.5194/acp-9-1597-2009   AbstractWebsite

A new analytical inversion method has been developed to determine the regional and global emissions of long-lived atmospheric trace gases. It exploits in situ measurement data from three global networks and builds on backward simulations with a Lagrangian particle dispersion model. The emission information is extracted from the observed concentration increases over a baseline that is itself objectively determined by the inversion algorithm. The method was applied to two hydrofluorocarbons (HFC-134a, HFC-152a) and a hydrochlorofluorocarbon (HCFC-22) for the period January 2005 until March 2007. Detailed sensitivity studies with synthetic as well as with real measurement data were done to quantify the influence on the results of the a priori emissions and their uncertainties as well as of the observation and model errors. It was found that the global a posteriori emissions of HFC-134a, HFC-152a and HCFC-22 all increased from 2005 to 2006. Large increases (21%, 16%, 18%, respectively) from 2005 to 2006 were found for China, whereas the emission changes in North America (-9%, 23%, 17%, respectively) and Europe (11%, 11%,-4%, respectively) were mostly smaller and less systematic. For Europe, the a posteriori emissions of HFC-134a and HFC-152a were slightly higher than the a priori emissions reported to the United Nations Framework Convention on Climate Change (UNFCCC). For HCFC-22, the a posteriori emissions for Europe were substantially (by almost a factor 2) higher than the a priori emissions used, which were based on HCFC consumption data reported to the United Nations Environment Programme (UNEP). Combined with the reported strongly decreasing HCFC consumption in Europe, this suggests a substantial time lag between the reported time of the HCFC-22 consumption and the actual time of the HCFC-22 emission. Conversely, in China where HCFC consumption is increasing rapidly according to the UNEP data, the a posteriori emissions are only about 40% of the a priori emissions. This reveals a substantial storage of HCFC-22 and potential for future emissions in China. Deficiencies in the geographical distribution of stations measuring halocarbons in relation to estimating regional emissions are also discussed in the paper. Applications of the inversion algorithm to other greenhouse gases such as methane, nitrous oxide or carbon dioxide are foreseen for the future.