Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2004
Simmonds, PG, Derwent RG, Manning AJ, Fraser PJ, Krummel PB, O'Doherty S, Prinn RG, Cunnold DM, Miller BR, Wang HJ, Ryall DB, Porter LW, Weiss RF, Salameh PK.  2004.  AGAGE observations of methyl bromide and methyl chloride at Mace Head, Ireland, and Cape Grim, Tasmania, 1998-2001. Journal of Atmospheric Chemistry. 47:243-269.   10.1023/B:JOCH.0000021136.52340.9c   AbstractWebsite

In situ AGAGE GC-MS measurements of methyl bromide (CH3Br) and methyl chloride (CH3Cl) at Mace Head, Ireland and Cape Grim, Tasmania (1998-2001) reveal a complex pattern of sources. At Mace Head both gases have well-defined seasonal cycles with similar average annual decreases of 3.0% yr(-1) (CH3Br) and 2.6% yr(-1) (CH3Cl), and mean northern hemisphere baseline mole fractions of 10.37 +/- 0.05 ppt and 535.7 +/- 2.2 ppt, respectively. We have used a Lagrangian dispersion model and local meteorological data to segregate the Mace Head observations into different source regions, and interpret the results in terms of the known sources and sinks of these two key halocarbons. At Cape Grim CH3Br and CH3Cl also show annual decreases in their baseline mixing ratios of 2.5% yr(-1) and 1.5% yr(-1), respectively. Mean baseline mole fractions were 7.94 +/- 0.03 ppt (CH3Br) and 541.3 +/- 1.1 ppt (CH3Cl). Although CH3Cl has a strong seasonal cycle there is no well-defined seasonal cycle in the Cape Grim CH3Br record. The fact that both gases are steadily decreasing in the atmosphere at both locations implies that a change has occurred which is affecting a common, major source of both gases (possibly biomass burning) and/or their major sink process (destruction by hydroxyl radical).

2001
O'Doherty, S, Simmonds PG, Cunnold DM, Wang HJ, Sturrock GA, Fraser PJ, Ryall D, Derwent RG, Weiss RF, Salameh P, Miller BR, Prinn RG.  2001.  In situ chloroform measurements at Advanced Global Atmospheric Gases Experiment atmospheric research stations from 1994 to 1998. Journal of Geophysical Research-Atmospheres. 106:20429-20444.   10.1029/2000jd900792   AbstractWebsite

Measurements of atmospheric chloroform (CHCl3) by in situ gas chromatography using electron capture detection are reported from the Advanced Global Atmospheric Gases Experiment (AGAGE) network of atmospheric research stations. They are some of the most comprehensive in situ, high-frequency measurements to be reported for CHCl3 and provide valuable information not only on clean "baseline" mixing ratios but also on local and regional sources. Emissions from these sources cause substantial periodic increases in CHCl3 concentrations above their baseline levels, which can be used to identify source strengths. This is particularly the case for measurements made at Mace Head, Ireland. Furthermore, these local sources of CHCl3 emissions are significant in relation to current estimates of global emissions and illustrate that the understanding of competing sources and sinks of CHCl3 is still fragmentary. These observations also show that CHCl3 has a very pronounced seasonal cycle with a summer minimum and winter maximum presumably resulting from enhanced destruction by OH in the summer. The amplitude of the cycle is dependent on sampling location. Over the 57 months of in situ measurements a global average baseline concentration of 8.9 +/-0.1 ppt was determined with no appreciable trend in the baseline detected.

2000
Prinn, RG, Weiss RF, Fraser PJ, Simmonds PG, Cunnold DM, Alyea FN, O'Doherty S, Salameh P, Miller BR, Huang J, Wang RHJ, Hartley DE, Harth C, Steele LP, Sturrock G, Midgley PM, McCulloch A.  2000.  A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. Journal of Geophysical Research-Atmospheres. 105:17751-17792.   10.1029/2000jd900141   AbstractWebsite

We describe in detail the instrumentation and calibrations used in the Atmospheric Lifetime Experiment (ALE), the Global Atmospheric Cases Experiment (GAGE), and the Advanced Global Atmospheric Gases Experiment (AGAGE) and present a history of the majority of the anthropogenic ozone-depleting and climate-forcing gases in air based on these experiments. Beginning in 1978, these three successive automated high-frequency in situ experiments have documented the long-term behavior of the measured concentrations of these gases over the past 20 years, and show both the evolution of latitudinal gradients and the high-frequency variability due to sources and circulation. We provide estimates of the long-term trends in total chlorine contained in long-lived halocarbons involved in ozone depletion. We summarize interpretations of these measurements using inverse methods to determine trace gas lifetimes and emissions. Finally, we provide a combined observational and modeled reconstruction of the evolution of chlorocarbons by latitude in the atmosphere over the past 60 years which can be used as boundary conditions for interpreting trapped air in glaciers and oceanic measurements of chlorocarbon tracers of the deep oceanic circulation. Some specific conclusions are as follows: (1) International compliance with the Montreal Protocol is so far resulting in chlorofluorocarbon and chlorocarbon mole fractions comparable to target levels; (2) mole fractions of total chlorine contained in long-lived halocarbons (CCl2F2, CCl3F, CH3CCl3, CCl4, CHClF2, CCl2FCClF2, CH3Cl, CH2Cl2, CHCl3, CCl2=CCl2) in the lower troposphere reached maximum values of about 3.6 ppb in 1993 and are beginning to slowly decrease in the global lower atmosphere; (3) the chlorofluorocarbons have atmospheric lifetimes consistent with destruction in the stratosphere being their principal removal mechanism; (4) multiannual variations in chlorofluorocarbon and chlorocarbon emissions deduced from ALE/GAGE/AGAGE data are consistent approximately with variations estimated independently from industrial production and sales data where available (CCl2F2 (CFC-12) and CCl2FCClF2 (CFC-113) show the greatest discrepancies); (5) the mole fractions of the hydrochlorofluorocarbons and hydrofluorocarbons, which are replacing the regulated halocarbons, are rising very rapidly in the atmosphere, but with the exception of the much longer manufactured CHClF2 (HCFC-22), they are not yet at levels sufficient to contribute significantly to atmospheric chlorine loading. These replacement species could in the future provide independent estimates of the global weighted-average OH concentration provided their industrial emissions are accurately documented; (6) in the future, analysis of pollution events measured using high-frequency in situ measurements of chlorofluorocarbons and their replacements may enable emission estimates at the regional level, which, together with industrial end-use data, are of sufficient accuracy to he capable of identifying regional noncompliance with the Montreal Protocol.