Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Simmonds, PG, Rigby M, McCulloch A, Vollmer MK, Henne S, Muhle J, O'Doherty S, Manning AJ, Krummel PB, Fraser PJ, Young D, Weiss RF, Salameh PK, Harth CM, Reimann S, Trudinger CM, Steele LP, Wang RHJ, Ivy DJ, Prinn RG, Mitrevski B, Etheridge DM.  2018.  Recent increases in the atmospheric growth rate and emissions of HFC-23 (CHF3) and the link to HCFC-22 (CHClF2) production. Atmospheric Chemistry and Physics. 18:4153-4169.   10.5194/acp-18-4153-2018   AbstractWebsite

High frequency measurements of trifluoromethane (HFC-23, CHF3), a potent hydrofluorocarbon greenhouse gas, largely emitted to the atmosphere as a by-product of the production of the hydrochlorofluorocarbon HCFC-22 (CHClF2), at five core stations of the Advanced Global Atmospheric Gases Experiment (AGAGE) network, combined with measurements on firn air, old Northern Hemisphere air samples and Cape Grim Air Archive (CGAA) air samples, are used to explore the current and historic changes in the atmospheric abundance of HFC-23. These measurements are used in combination with the AGAGE 2-D atmospheric 12-box model and a Bayesian inversion methodology to determine model atmospheric mole fractions and the history of global HFC-23 emissions. The global modelled annual mole fraction of HFC-23 in the background atmosphere was 28.9 +/- 0.6 pmol mol(-1) at the end of 2016, representing a 28% increase from 22.6 +/- 0.4 pmol mol(-1) in 2009. Over the same time frame, the modelled mole fraction of HCFC-22 increased by 19% from 199 +/- 2 to 237 +/- 2 pmol mol(-1). However, unlike HFC-23, the annual average HCFC-22 growth rate slowed from 2009 to 2016 at an annual average rate of -0.5 pmol mol(-1) yr(-2). This slowing atmospheric growth is consistent with HCFC-22 moving from dispersive (high fractional emissions) to feedstock (low fractional emissions) uses, with HFC-23 emissions remaining as a consequence of incomplete mitigation from all HCFC-22 production. Our results demonstrate that, following a minimum in HFC-23 global emissions in 2009 of 9.6 +/- 0.6, emissions increased to a maximum in 2014 of 14.5 +/- 0.6 Gg yr(-1) and then declined to 12.7 +/- 0.6 Gg yr(-1) (157 MtCO(2) eq.yr(-1)) in 2016. The 2009 emissions minimum is consistent with estimates based on national reports and is likely a response to the implementation of the Clean Development Mechanism (CDM) to mitigate HFC-23 emissions by incineration in developing (non-Annex 1) countries under the Kyoto Protocol. Our derived cumulative emissions of HFC-23 during 20102016 were 89 +/- 2 Gg (1.1 +/- 0.2 GtCO(2) eq.), which led to an increase in radiative forcing of 1.0 +/- 0.1mWm(-2) over the same period. Although the CDM had reduced global HFC-23 emissions, it cannot now offset the higher emissions from increasing HCFC-22 production in non-Annex 1 countries, as the CDM was closed to new entrants in 2009. We also find that the cumulative European HFC-23 emissions from 2010 to 2016 were similar to 1.3 Gg, corresponding to just 1.5% of cumulative global HFC-23 emissions over this same period. The majority of the increase in global HFC-23 emissions since 2010 is attributed to a delay in the adoption of mitigation technologies, predominantly in China and East Asia. However, a reduction in emissions is anticipated, when the Kigali 2016 amendment to the Montreal Protocol, requiring HCFC and HFC production facilities to introduce destruction of HFC-23, is fully implemented.

Vollmer, MK, Young D, Trudinger CM, Muhle J, Henne S, Rigby M, Park S, Li S, Guillevic M, Mitrevski B, Harth CM, Miller BR, Reimann S, Yao B, Steele LP, Wyss SA, Lunder CR, Arduini J, McCulloch A, Wu S, Rhee TS, Wang RHJ, Salameh PK, Hermansen O, Hill M, Langenfelds RL, Ivy D, O'Doherty S, Krummel PB, Maione M, Etheridge DM, Zhou LX, Fraser PJ, Prinn RG, Weiss RF, Simmonds PG.  2018.  Atmospheric histories and emissions of chlorofluorocarbons CFC-13 (CClF3), Sigma CFC-114 (C2Cl2F4), and CFC-115 (C2ClF5). Atmospheric Chemistry and Physics. 18:979-1002.   10.5194/acp-18-979-2018   AbstractWebsite

Based on observations of the chlorofluorocarbons CFC-13 (chlorotrifluoromethane), Sigma CFC-114 (combined measurement of both isomers of dichlorotetrafluoroethane), and CFC-115 (chloropentafluoroethane) in atmospheric and firn samples, we reconstruct records of their tropospheric histories spanning nearly 8 decades. These compounds were measured in polar firn air samples, in ambient air archived in canisters, and in situ at the AGAGE (Advanced Global Atmospheric Gases Experiment) network and affiliated sites. Global emissions to the atmosphere are derived from these observations using an inversion based on a 12-box atmospheric transport model. For CFC-13, we provide the first comprehensive global analysis. This compound increased monotonically from its first appearance in the atmosphere in the late 1950s to a mean global abundance of 3.18 ppt (dry-air mole fraction in parts per trillion, pmol mol(-1)) in 2016. Its growth rate has decreased since the mid-1980s but has remained at a surprisingly high mean level of 0.02 ppt yr(-1) since 2000, resulting in a continuing growth of CFC-13 in the atmosphere. Sigma CFC-114 increased from its appearance in the 1950s to a maximum of 16.6 ppt in the early 2000s and has since slightly declined to 16.3 ppt in 2016. CFC-115 increased monotonically from its first appearance in the 1960s and reached a global mean mole fraction of 8.49 ppt in 2016. Growth rates of all three compounds over the past years are significantly larger than would be expected from zero emissions. Under the assumption of unchanging lifetimes and atmospheric transport patterns, we derive global emissions from our measurements, which have remained unexpectedly high in recent years: mean yearly emissions for the last decade (2007-2016) of CFC-13 are at 0.48 +/- 0.15 kt yr(-1) (> 15% of past peak emissions), of 6 CFC-114 at 1.90 +/- 0.84 kt yr(-1) (similar to 10% of peak emissions), and of CFC-115 at 0.80 +/- 0.50 kt yr(-1) (> 5% of peak emissions). Mean yearly emissions of CFC-115 for 2015-2016 are 1.14 +/- 0.50 kt yr(-1) and have doubled compared to the 2007-2010 minimum. We find CFC-13 emissions from aluminum smelters but if extrapolated to global emissions, they cannot account for the lingering global emissions determined from the atmospheric observations. We find impurities of CFC-115 in the refrigerant HFC-125 (CHF2CF3) but if extrapolated to global emissions, they can neither account for the lingering global CFC-115 emissions determined from the atmospheric observations nor for their recent increases. We also conduct regional inversions for the years 2012-2016 for the northeastern Asian area using observations from the Korean AGAGE site at Gosan and find significant emissions for Sigma CFC-114 and CFC-115, suggesting that a large fraction of their global emissions currently occur in northeastern Asia and more specifically on the Chinese mainland.

Petrenko, VV, Severinghaus JP, Smith AM, Riedel K, Baggenstos D, Harth C, Orsi A, Hua Q, Franz P, Takeshita Y, Brailsford GW, Weiss RF, Buizert C, Dickson A, Schaefer H.  2013.  High-precision 14C measurements demonstrate production of in situ cosmogenic 14CH4 and rapid loss of in situ cosmogenic 14CO in shallow Greenland firn. Earth and Planetary Science Letters. 365:190-197.   10.1016/j.epsl.2013.01.032   AbstractWebsite

Measurements of radiocarbon (C-14) in carbon dioxide (CO2), methane (CH4) and carbon monoxide (CO) from glacial ice are potentially useful for absolute dating of ice cores, studies of the past atmospheric CH4 budget and for reconstructing the past cosmic ray flux and solar activity. Interpretation of C-14 signals in ice is complicated by the fact that the two major C-14 components-trapped atmospheric and in situ cosmogenic-are present in a combined form, as well as by a very limited understanding of the in situ component. This study measured (CH4)-C-14 and (CO)-C-14 content in glacial firn with unprecedented precision to advance understanding of the in situ C-14 component. (CH4)-C-14 and (CO)-C-14 were melt-extracted on site at Summit, Greenland from three very large (similar to 1000 kg each) replicate samples of firn that spanned a depth range of 3.6-5.6 m. Non-cosmogenic C-14 contributions were carefully characterized through simulated extractions and a suite of supporting measurements. In situ cosmogenic (CO)-C-14 was quantified to better than +/- 0.6 molecules g(-1) ice, improving on the precision of the best prior ice (CO)-C-14 measurements by an order of magnitude. The (CO)-C-14 measurements indicate that most (>99%) of the in situ cosmogenic C-14 is rapidly lost from shallow Summit firn to the atmosphere. Despite this rapid C-14 loss, our measurements successfully quantified (CH4)-C-14 in the retained fraction of cosmogenic C-14 (to +/- 0.01 molecules g(-1) ice or better), and demonstrate for the first time that a significant amount of (CH4)-C-14 is produced by cosmic rays in natural ice. This conclusion increases the confidence in the results of an earlier study that used measurements of (CH4)-C-14 in glacial ice to show that wetlands were the likely main driver of the large and rapid atmospheric CH4 increase approximately 1 1.6 kyr ago. (C) 2013 Elsevier B.V. All rights reserved.

Muhle, J, Ganesan AL, Miller BR, Salameh PK, Harth CM, Greally BR, Rigby M, Porter LW, Steele LP, Trudinger CM, Krummel PB, O'Doherty S, Fraser PJ, Simmonds PG, Prinn RG, Weiss RF.  2010.  Perfluorocarbons in the global atmosphere: tetrafluoromethane, hexafluoroethane, and octafluoropropane. Atmospheric Chemistry and Physics. 10:5145-5164.   10.5194/acp-10-5145-2010   AbstractWebsite

We present atmospheric baseline growth rates from the 1970s to the present for the long-lived, strongly infrared-absorbing perfluorocarbons (PFCs) tetrafluoromethane (CF(4)), hexafluoroethane (C(2)F(6)), and octafluoropropane (C(3)F(8)) in both hemispheres, measured with improved accuracies (similar to 1-2%) and precisions (<0.3%, or <0.2 ppt (parts per trillion dry air mole fraction), for CF(4); <1.5%, or <0.06 ppt, for C(2)F(6); <4.5%, or <0.02 ppt, for C3F8) within the Advanced Global Atmospheric Gases Experiment (AGAGE). Pre-industrial background values of 34.7 +/- 0.2 ppt CF(4) and 0.1 +/- 0.02 ppt C(2)F(6) were measured in air extracted from Greenland ice and Antarctic firn. Anthropogenic sources are thought to be primary aluminum production (CF(4), C(2)F(6), C(3)F(8)), semiconductor production (C(2)F(6), CF(4), C(3)F(8)) and refrigeration use (C(3)F(8)). Global emissions calculated with the AGAGE 2-D 12-box model are significantly higher than most previous emission estimates. The sum of CF(4) and C(2)F(6) emissions estimated from aluminum production and non-metal production are lower than observed global top-down emissions, with gaps of similar to 6 Gg/yr CF(4) in recent years. The significant discrepancies between previous CF(4), C(2)F(6), and C(3)F(8) emission estimates and observed global top-down emissions estimated from AGAGE measurements emphasize the need for more accurate, transparent, and complete emission reporting, and for verification with atmospheric measurements to assess the emission sources of these long-lived and potent greenhouse gases, which alter the radiative budget of the atmosphere, essentially permanently, once emitted.