Publications

Export 28 results:
Sort by: Author Title Type [ Year  (Desc)]
2002
Cunnold, DM, Steele LP, Fraser PJ, Simmonds PG, Prinn RG, Weiss RF, Porter LW, O'Doherty S, Langenfelds RL, Krummel PB, Wang HJ, Emmons L, Tie XX, Dlugokencky EJ.  2002.  In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985-2000 and resulting source inferences. Journal of Geophysical Research-Atmospheres. 107   10.1029/2001jd001226   AbstractWebsite

[1] Continuous measurements of methane since 1986 at the Global Atmospherics Gases Experiment/Advanced Global Atmospherics Gases Experiment (GAGE/AGAGE) surface sites are described. The precisions range from approximately 10 ppb at Mace Head, Ireland, during GAGE to better than 2 ppb at Cape Grim, Tasmania, during AGAGE (i.e., since 1993). The measurements exhibit good agreement with coincident measurements of air samples from the same locations analyzed by Climate Monitoring and Diagnostics Laboratory (CMDL) except for differences of approximately 5 ppb before 1989 (GAGE lower) and about 4 ppb from 1991 to 1995 (GAGE higher). These results are obtained before applying a factor of 1.0119 to the GAGE/AGAGE values to place them on the Tohoku University scale. The measurements combined with a 12-box atmospheric model and an assumed atmospheric lifetime of 9.1 years indicates net annual emissions (emissions minus soil sinks) of 545 Tg CH4 with a variability of only +/-20 Tg from 1985 to 1997 but an increase in the emissions in 1998 of 37 +/- 10 Tg. The effect of OH changes inferred by Prinn et al. [2001] is to increase the estimated methane emissions by approximately 20 Tg in the mid-1980s and to reduce them by 20 Tg in 1997 and by more thereafter. Using a two-dimensional (2-D), 12-box model with transport constrained by the GAGE/AGAGE chlorofluorocarbon measurements, we calculate that the proportion of the emissions coming from the Northern Hemisphere is between 73 and 81%, depending on the OH distribution used. However, this result includes an adjustment of 5% derived from a simulation of the 2-D estimation procedure using the 3-D MOZART model. This adjustment is needed because of the very different spatial emission distributions of the chlorofluorocarbons and methane which makes chlorofluorocarbons derived transport rates inaccurate for the 2-D simulation of methane. The 2-D model combined with the annual cycle in OH from Spivakovsky et al. [2000] provide an acceptable fit to the observed 12-month cycles in methane. The trend in the amplitude of the annual cycle of methane at Cape Grim is used to infer a trend in OH in 30degrees-90degreesS of 0 +/- 5% per decade from 1985 to 2000, in qualitative agreement with Prinn et al. [2001] for the Southern Hemisphere.

2001
Rhew, RC, Miller BR, Vollmer MK, Weiss RF.  2001.  Shrubland fluxes of methyl bromide and methyl chloride. Journal of Geophysical Research-Atmospheres. 106:20875-20882.   10.1029/2001jd000413   AbstractWebsite

Flux measurements in coastal sage scrub, chamise chaparral, and creosote bush scrub environments show that methyl bromide (CH(3)Br) and methyl chloride (CH(3)Cl), compounds that are involved in stratospheric ozone depletion, are both produced and consumed by southern California shrubland ecosystems. CH(3)Br and CH(3)Cl are produced in association with a variety of plants and are consumed by the soils, although there is a large variability in the fluxes, depending on predominant vegetation and environmental conditions. At sites with a net uptake of both compounds the fluxes of CH(3)Cl and CH(3)Br show a strong correlation, with a molar ratio of roughly 40:1, pointing to a similar mechanism of consumption. In contrast, the net production rates of these compounds show no apparent correlation with each other. The average observed net CH(3)Br uptake rates are an order of magnitude smaller than the previously reported average soil consumption rates assigned to shrublands. Extrapolations from our field measurements suggest that shrublands globally have a maximum net consumption of <1 Gg yr(-1) for CH(3)Br and < 20 Gg yr(-1) for CH(3)Cl and may, in fact, be net sources for these compounds. Consequently, the measured net fluxes from shrubland ecosystems can account for part of the present imbalance in the CH(3)Br budget by adding a new source term and potentially reducing the soil sink term. These results also suggest that while shrubland soil consumption of CH(3)Cl may be small, soils in general may be a globally significant sink for CH(3)Cl.

Prinn, RG, Huang J, Weiss RF, Cunnold DM, Fraser PJ, Simmonds PG, McCulloch A, Harth C, Salameh P, O'Doherty S, Wang RHJ, Porter L, Miller BR.  2001.  Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades. Science. 292:1882-1888.   10.1126/science.1058673   AbstractWebsite

The hydroxyl radical (OH) is the dominant oxidizing chemical in the atmosphere. It destroys most air pollutants and many gases involved in ozone depletion and the greenhouse effect. Global measurements of 1,1,1-trichloroethane (CH3CCl3, methyl chloroform) provide an accurate method for determining the global and hemispheric behavior of OH. Measurements show that CH3CCl3 Levels rose steadily from 1978 to reach a maximum in 1992 and then decreased rapidly to levels in 2000 that were Lower than the levels when measurements began in 1978. Analysis of these observations shows that global OH Levels were growing between 1978 and 1988, but the growth rate was decreasing at a rate of 0.23 +/- 0.18% year(-2), so that OH Levels began declining after 1988. Overall, the global average OH trend between 1978 and 2000 was -0.64 +/- 0.60% year(-1). These variations imply important and unexpected gaps in current understanding of the capability of the atmosphere to cleanse itself.