Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2004
Nevison, CD, Lueker TJ, Weiss RF.  2004.  Quantifying the nitrous oxide source from coastal upwelling. Global Biogeochemical Cycles. 18   10.1029/2003gb002110   AbstractWebsite

A continuous record of atmospheric N2O measured from a tower in northern California captures strong pulses of N2O released by coastal upwelling events. The atmospheric record offers a unique, observation-based method for quantifying the coastal N2O source. A coastal upwelling model is developed and compared to the constraints imposed by the atmospheric record in the Pacific Northwest coastal region. The upwelling model is based on Ekman theory and driven by high-resolution wind and SST data and by relationships between subsurface N2O and temperature. A simplified version of the upwelling model is extended to the world's major eastern boundary regions to estimate a total coastal upwelling source of similar to0.2 +/- >70% Tg N2O-N/yr. This flux represents similar to5% of the total ocean source, estimated here at similar to4 Tg N2O-N/yr using traditional gas-transfer methods, and is probably largely neglected in current N2O budgets.

2003
Lueker, TJ, Walker SJ, Vollmer MK, Keeling RF, Nevison CD, Weiss RF, Garcia HE.  2003.  Coastal upwelling air-sea fluxes revealed in atmospheric observations of O2/N2, CO2 and N2O. Geophysical Research Letters. 30   10.1029/2002gl016615   AbstractWebsite

[1] We capture water column ventilation resulting from coastal upwelling in continuous records of O-2/N-2, CO2, and N2O at Trinidad, California. Our records reveal the gas exchange response time of the ocean to the upwelling and ensuing biological production. Satellite and buoy wind data allow extrapolation of our records to assess coastal upwelling air-sea fluxes of O-2 and N2O. We improve on previous regional estimates of N2O flux in coastal and continental shelf region of the western U. S. We characterize the source of N2O as being predominately from nitrification based on the O-2/N2O emissions ratio observed in our atmospheric records.