Publications

Export 2 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
L
Li, PY, Muhle J, Montzka SA, Oram DE, Miller BR, Weiss RF, Fraser PJ, Tanhua T.  2019.  Atmospheric histories, growth rates and solubilities in seawater and other natural waters of the potential transient tracers HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14 and PFC-116. Ocean Science. 15:33-60.   10.5194/os-15-33-2019   AbstractWebsite

We present consistent annual mean atmospheric histories and growth rates for the mainly anthropogenic halogenated compounds HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14 and PFC-116, which are all potentially useful oceanic transient tracers (tracers of water transport within the ocean), for the Northern and Southern Hemisphere with the aim of providing input histories of these compounds for the equilibrium between the atmosphere and surface ocean. We use observations of these halogenated compounds made by the Advanced Global Atmospheric Gases Experiment (AGAGE), the Scripps Institution of Oceanography (SIO), the Commonwealth Scientific and Industrial Research Organization (CSIRO), the National Oceanic and Atmospheric Administration (NOAA) and the University of East Anglia (UEA). Prior to the direct observational record, we use archived air measurements, firn air measurements and published model calculations to estimate the atmospheric mole fraction histories. The results show that the atmospheric mole fractions for each species, except HCFC-14 lb and HCFC-142b, have been increasing since they were initially produced. Recently, the atmospheric growth rates have been decreasing for the HCFCs (HCFC-22, HCFC-141b and HCFC-142b), increasing for the HFCs (HFC-134a, HFC-125, HFC-23) and stable with little fluctuation for the PFCs (PFC-14 and PFC-116) investigated here. The atmospheric histories (source functions) and natural background mole fractions show that HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125 and HFC-23 have the potential to be oceanic transient tracers for the next few decades only because of the recently imposed bans on production and consumption. When the atmospheric histories of the compounds are not monotonically changing, the equilibrium atmospheric mole fraction (and ultimately the age associated with that mole fraction) calculated from their concentration in the ocean is not unique, reducing their potential as transient tracers. Moreover, HFCs have potential to be oceanic transient tracers for a longer period in the future than HCFCs as the growth rates of HFCs are increasing and those of HCFCs are decreasing in the background atmosphere. PFC-14 and PFC-116, however, have the potential to be tracers for longer periods into the future due to their extremely long lifetimes, steady atmospheric growth rates and no explicit ban on their emissions. In this work, we also derive solubility functions for HCFC-22, HCFC-14 lb, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14 and PFC-116 in water and seawater to facilitate their use as oceanic transient tracers. These functions are based on the Clark-Glew-Weiss (CGW) water solubility function fit and salting-out coefficients estimated by the poly-parameter linear free-energy relationships (pp-LFERs). Here we also provide three methods of seawater solubility estimation for more compounds. Even though our intention is for application in oceanic research, the work described in this paper is potentially useful for tracer studies in a wide range of natural waters, including freshwater and saline lakes, and, for the more stable compounds, groundwaters.

T
Takahashi, T, Weiss RF, Culberson CH, Edmond JM, Hammond DE, Wong CS, Li Y-hui, Bainbridge AE.  1970.  A carbonate chemistry profile at the 1969 GEOSECS intercalibration station in the eastern Pacific Ocean. Journal of Geophysical Research. 75:7648-7666., Washington, DC, United States (USA): American Geophysical Union, Washington, DC   10.1029/JC075i036p07648   AbstractWebsite

To compare and evaluate measurements made by the various laboratories participating in the Geochemical Ocean Section Study (Geosecs), four carbonate chemistry parameters, pH, pCO2, alkalinity, and total dissolved CO2, as well as temperature and salinity were measured for samples collected at the Geosecs intercalibration station, 28°20′±07′N and 121°41′±02′W. The methods for measurement include the glass-calomel electrode pair for pH, the pH and the potentiometric acid titration methods for alkalinity, gas chromatographic, infrared and potentiometric acid titration method for total CO2, and the gas equilibrator-infrared method for pCO2. The alkalinity values measured by the pH method agree with the values measured by the potentiometric acid titration method within 1%, and the total CO2 values measured by the chromatographic method agree with the values measured by the potentiometric acid titration method within 2%. The observed 3 to 5% difference between the total CO2 values measured by the chromatographic and infrared methods is attributed to the biological alteration of the unpoisoned samples used for the infrared methods. When two of the four measured carbonate parameters were used to calculate the remaining two parameters, the calculated values are found to differ systematically from the measured values for those two parameters. Such a discrepancy can be eliminated if a 30% error in the second apparent dissociation constant for carbonic acid (K2′) is assumed.